Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh BB1, CD. A1D1. Tính khoảng cách và góc giữa hai đường thẳng MP và C1N.
Hướng dẫn làm bài:
Ta chọn hệ trục tọa độ như sau: B1 là gốc tọa độ, \(\overrightarrow {{B_1}{A_1}} = \overrightarrow i ,\overrightarrow {{B_1}{C_1}} = \overrightarrow j ,\overrightarrow {{B_1}B} = \overrightarrow k \). Trong hệ trục vừa chọn, ta có B1(0; 0; 0), B(0; 0; 1), A1(1; 0; 0), D1(1; 1; 0), C(0; 1; 1), D(1; 1; 1), C1(0; 1; 0).
Suy ra \(M(0;0;{1 \over 2}),P(1;{1 \over 2};0),N({1 \over 2};1;1)\)
Advertisements (Quảng cáo)
Ta có \(\overrightarrow {MP} = (1;{1 \over 2}; - {1 \over 2});\overrightarrow {{C_1}N} = ({1 \over 2};0;1)\)
Gọi \((\alpha )\) là mặt phẳng chứa C1N và song song với MP. \((\alpha )\) có vecto pháp tuyến là \(\overrightarrow n = ({1 \over 2}; - {5 \over 4}; - {1 \over 4})\) hay \(\overrightarrow n ‘ = (2; - 5; - 1)\)
Phương trình của \((\alpha )\) là \( 2x – 5(y – 1) – z = 0\) hay \(2x – 5y – z + 5 = 0\)
Ta có \(d(MP,{C_1}N) = d(M,(\alpha )) = {{| - {1 \over 2} + 5|} \over {\sqrt {25 + 4 + 1} }} = {9 \over {2\sqrt {30} }}\)
Ta có: \(\cos (\widehat {MP,{C_1}N}) = {{|\overrightarrow {MP} .\overrightarrow {{C_1}N} |} \over {|\overrightarrow {MP} |.|\overrightarrow {{C_1}N} |}} = 0\) . Vậy \((\widehat {MP,{C_1}N}) = {90^0}\).