Trang chủ Lớp 12 SBT Toán lớp 12 (sách cũ) Bài 5.7 trang 220 sách bài tập (SBT) – Giải tích 12:...

Bài 5.7 trang 220 sách bài tập (SBT) - Giải tích 12: Chứng minh các bất đẳng thức sau:...

Chứng minh các bất đẳng thức sau. Bài 5.7 trang 220 sách bài tập (SBT) - Giải tích 12 - BÀI TẬP ÔN TẬP CUỐI NĂM - GIẢI TÍCH 12

Chứng minh các bất đẳng thức sau:

a) \({e^x} + \cos x \ge 2 + x - {{{x^2}} \over 2},\forall x \in R\)

b) \({e^x} - {e^{ - x}} \ge 2\ln (x + \sqrt {1 + {x^2}} ),\forall x \ge 0\)

c) \(8{\sin ^2}{x \over 2} + \sin 2x > 2x,\forall x \in (0;\pi {\rm{]}}\)

Hướng dẫn làm bài

a) Xét hàm số \(f(x) = {e^x} + \cos x - 2 - x + {{{x^2}} \over 2}\)  , có tập xác định là R.

          \(f'(x) = {e^x} - \sin x - 1 + x;f'(x) = 0  \Leftrightarrow x = 0\)               

Ta lại có  \(f”(x) = {e^x} + 1 - \cos x > 0,\forall x\)  vì \(1 - \cos x \ge 0\)  và \({e^x} > 0\)

Như vậy, f’(x) đồng biến trên R. Từ đó: \(f'(x) < f'(0) = 0,\forall x < 0;f'(x) > f'(0) = 0,\forall x > 0\)

Ta có bảng biến thiên

Hàm số \(f(x) = {e^x} + \cos x - 2 - x + {{{x^2}} \over 2} \ge {f_{CT}} = f(0) = 0,\forall x \in R\)

Từ đó suy ra điều phải chứng minh.

Advertisements (Quảng cáo)

b) \(\forall x \ge 0\)  xét hàm số \(f(x) = {e^x} - {e^{ - x}} - 2\ln (x + \sqrt {1 + {x^2}} )\) , ta có

                \(f'(x) = {e^x} + {e^{ - x}} - {2 \over {\sqrt {1 + {x^2}} }}\)       ;

Từ đó f ‘(x) > 0 với mọi x > 0  (vì \({e^x} + {e^{ - x}} > 2\) và \({2 \over {\sqrt {1 + {x^2}} }} < 2\) ) và \(f ‘(x) = 0 \Leftrightarrow x = 0\)

Vậy f(x) đồng biến trên \({\rm{[}}0; + \infty )\) , tức là:

      \(f(x) \ge f(0) = {e^0} - {e^0} - 2\ln 1 = 0\)  

Từ đó suy ra điều cần chứng minh

c) Xét hàm số  \(f(x) = 8{\sin ^2}{x \over 2} + \sin 2x - 2x,\forall x \in (0;\pi {\rm{]}}\)

      \(f'(x) = 4\sin x + 2\cos 2x - 2 = 4\sin x(1 - \sin x)\)

\(f'(x) = 0 \Leftrightarrow \left[ {\matrix{{x = {\pi \over 2}} \cr {x = \pi } \cr} } \right.\)           

Với  \(x \in (0;\pi {\rm{]}}\) ta có \(f'(x) \ge 0\)  và dấu bằng chỉ xảy ra tại hai điểm.

Vậy f(x) đồng biến trên nửa \((0;\pi {\rm{]}}\). Mặt khác, f(0) = 0 nên f(x) > 0.

Từ đó suy ra điều phải chứng minh.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)