Trang chủ Lớp 12 SGK Toán 12 - Chân trời sáng tạo Bài 6 trang 86 Toán 12 tập 1 – Chân trời sáng...

Bài 6 trang 86 Toán 12 tập 1 - Chân trời sáng tạo: Nếu so sánh theo số trung bình thì học sinh trường nào viết nhanh hơn?...

Số trung bình nhỏ hơn thì học sinh trường đó viết nhanh hơn Khoảng tứ phân vị nhỏ hơn thì học sinh trường đó có tốc độ viết đồng đều. Phân tích và giải bài tập 6 trang 86 SGK Toán 12 tập 1 - Chân trời sáng tạo Bài tập cuối chương 3. Thời gian hoàn thành một bài viết chính tả của một số học sinh lớp 4 hai trường X và Y được ghi lại ở bảng sau... Nếu so sánh theo số trung bình thì học sinh trường nào viết nhanh hơn?

Question - Câu hỏi/Đề bài

Thời gian hoàn thành một bài viết chính tả của một số học sinh lớp 4 hai trường X và Y được ghi lại ở bảng sau:

a) Nếu so sánh theo số trung bình thì học sinh trường nào viết nhanh hơn? b) Nếu so sánh theo khoảng tứ phân vị thì học sinh trường nào có tốc độ viết đồng đều hơn? c) Nếu so sánh theo độ lệch chuẩn thì học sinh trường nào có tốc độ viết đồng đều hơn?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Số trung bình nhỏ hơn thì học sinh trường đó viết nhanh hơn

Khoảng tứ phân vị nhỏ hơn thì học sinh trường đó có tốc độ viết đồng đều hơn

Độ lệch chuẩn nhỏ hơn thì học sinh trường đó có tốc độ viết đồng đều hơn

Answer - Lời giải/Đáp án

a) Cỡ mẫu: n = 50

Xét số liệu của trường X:

Số trung bình: \(\overline {{x_X}} = \frac{{8.6,5 + 10.7,5 + 13.8,5 + 10.9,5 + 9.10,5}}{{50}} = 8,54\)

Xét số liệu của trường Y:

Số trung bình: \(\overline {{x_Y}} = \frac{{4.6,5 + 12.7,5 + 17.8,5 + 14.9,5 + 3.10,5}}{{50}} = 8,5\)

Vậy nếu so sánh theo số trung bình thì học sinh trường Y viết nhanh hơn

Advertisements (Quảng cáo)

b) Gọi \({x_1};{\rm{ }}{x_2}; \ldots ;{\rm{ }}{x_{50}}\) là mẫu số liệu gốc về thời gian hoàn thành một bài viết chính tả của 50 học sinh lớp 4 trường X được xếp theo thứ tự không giảm.

Ta có: \({x_1}; \ldots ;{\rm{ }}{x_8} \in [6;7)\); \({x_9}; \ldots ;{\rm{ }}{x_{18}} \in [7;8)\);\({x_{19}}; \ldots ;{\rm{ }}{x_{31}} \in [8;9)\);\({x_{32}}; \ldots ;{\rm{ }}{x_{41}} \in [9;10)\);\({x_{42}}; \ldots ;{\rm{ }}{x_{50}} \in [10;11)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{13}} \in [7;8)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 7 + \frac{{\frac{{50}}{4} - 8}}{{10}}(8 - 7) = 7,45\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{38}} \in [9;10)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 9 + \frac{{\frac{{3.50}}{4} - (8 + 10 + 13)}}{{10}}(10 - 9) = 9,65\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q} = {Q_3} - {Q_1} = 2,2\)

Gọi \({y_1};{\rm{ }}{y_2}; \ldots ;{\rm{ }}{y_{50}}\) là mẫu số liệu gốc về thời gian hoàn thành một bài viết chính tả của 50 học sinh lớp 4 trường Y được xếp theo thứ tự không giảm.

Ta có: \({y_1}; \ldots ;{\rm{ }}{y_4} \in [6;7)\); \({y_5}; \ldots ;{\rm{ }}{y_{16}} \in [7;8)\);\({y_{17}}; \ldots ;{\rm{ }}{y_{33}} \in [8;9)\);\({y_{34}};...;{y_{47}} \in [9;10)\);\({y_{48}};...;{y_{50}} \in [10;11)\)

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({y_{13}} \in [7;8)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1}’ = 7 + \frac{{\frac{{50}}{4} - 4}}{{12}}(8 - 7) = \frac{{185}}{{24}}\)

Tứ phân vị thứ ba của mẫu số liệu gốc là \({y_{38}} \in [9;10)\). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3}’ = 9 + \frac{{\frac{{3.50}}{4} - (4 + 12 + 17)}}{{14}}(10 - 9) = \frac{{261}}{{28}}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \({\Delta _Q}’ = {Q_3}’ - {Q_1}’ = \frac{{271}}{{168}}\)

Vậy nếu so sánh theo khoảng tứ phân vị thì học sinh trường Y có tốc độ viết đồng đều hơn

c) Xét số liệu của trường X:

Độ lệch chuẩn: \({\sigma _Y} = \sqrt {\frac{{8.6,{5^2} + 10.7,{5^2} + 13.8,{5^2} + 10.9,{5^2} + 9.10,{5^2}}}{{50}} - 8,{{54}^2}} \approx 1,33\)

Xét số liệu của trường Y:

Độ lệch chuẩn: \({\sigma _Y} = \sqrt {\frac{{4.6,{5^2} + 12.7,{5^2} + 17.8,{5^2} + 14.9,{5^2} + 3.10,{5^2}}}{{50}} - 8,{5^2}} \approx 1,04\)

Vậy nếu so sánh theo độ lệch chuẩn thì học sinh trường Y có tốc độ viết đồng đều hơn

Advertisements (Quảng cáo)