Câu hỏi/bài tập:
Ta có \(\left( {\frac{{{x^3}}}{3}} \right)’ = {x^2}\) và \(\left( {{x^3}} \right)’ = 3{x^2}\).
a) Tìm \(\int {{x^2}dx} \) và \(3\int {{x^2}dx} \).
b) Tìm \(\int {3{x^2}dx} \).
c) Từ các kết quả trên, giải thích tại sao \(\int {3{x^2}dx} = 3\int {{x^2}dx} \).
a, b) Sử dụng kiến thức nếu \(F’\left( x \right) = f\left( x \right)\) thì \(\int {f\left( x \right)dx} = F\left( x \right) + C\)
Advertisements (Quảng cáo)
c) So sánh \(\int {3{x^2}dx} \) và \(3\int {{x^2}dx} \) và rút ra kết luận.
a) Do \(\left( {\frac{{{x^3}}}{3}} \right)’ = {x^2}\) nên \(\int {{x^2}dx = \frac{{{x^3}}}{3} + C} \).
Suy ra \(3\int {{x^2}dx = 3\left( {\frac{{{x^3}}}{3} + C} \right) = {x^3}} + 3C\)
b) Do \(\left( {{x^3}} \right)’ = 3{x^2}\) nên \(\int {3{x^2}dx} = {x^3} + C\).
c) Ta thấy rằng \(\int {3{x^2}dx} \) và \(3\int {{x^2}dx} \) đều cùng có dạng \({x^3} + C\), với \(C\) là một hằng số. Do đó \(\int {3{x^2}dx} = 3\int {{x^2}dx} \).