Sử dụng các công thức \(\int {{e^x}dx} = {e^x} + C\) và \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\). Giải và trình bày phương pháp giải Câu hỏi Thực hành 4 trang 9 SGK Toán 12 Chân trời sáng tạo - Bài 1. Nguyên hàm.
Câu hỏi/bài tập:
Tìm
a) \(\int {{3^x}dx} \)
b) \(\int {{e^{2x}}dx} \)
Advertisements (Quảng cáo)
Sử dụng các công thức \(\int {{e^x}dx} = {e^x} + C\) và \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\)
a) \(\int {{3^x}dx} = \frac{{{3^x}}}{{\ln 3}} + C\)
b) \(\int {{e^{2x}}dx} = \int {{{\left( {{e^2}} \right)}^x}dx} = \frac{{{{\left( {{e^2}} \right)}^x}}}{{\ln \left( {{e^2}} \right)}} + C = \frac{{{e^{2x}}}}{2} + C\).