Sử dụng công thức \(\int\limits_a^b {f\left( x \right)dx} = \left. Gợi ý giải Câu hỏi Thực hành 2 trang 16 SGK Toán 12 Chân trời sáng tạo - Bài 2. Tích phân.
Câu hỏi/bài tập:
Tính các tích phân sau:
a) \(\int\limits_1^3 {2xdx} \)
b) \(\int\limits_0^\pi {\sin tdt} \)
c) \(\int\limits_0^{\ln 2} {{e^u}du} \)
Advertisements (Quảng cáo)
Sử dụng công thức \(\int\limits_a^b {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_a^b = F\left( b \right) - F\left( a \right)\), với \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\)
a) \(\int\limits_1^3 {2xdx} = \left. {{x^2}} \right|_1^3 = {3^2} - {1^2} = 8\)
b) \(\int\limits_0^\pi {\sin tdt} = \left. {\left( { - \cos t} \right)} \right|_0^\pi = \left( { - \cos \pi } \right) - \left( { - \cos 0} \right) = 2\)
c) \(\int\limits_0^{\ln 2} {{e^u}du} = \left. {{e^u}} \right|_0^2 = {e^2} - {e^0} = {e^2} - 1\)