Câu hỏi/bài tập:
Sau khi xuất phát, ô tô di chuyển với tốc độ \(v\left( t \right) = 2t - 0,03{t^2}\) \(\left( {0 \le t \le 10} \right)\), trong đó \(v\left( t \right)\) tính theo \({\rm{m/s}}\), thời gian \(t\) tính theo giây với \(t = 0\) là thời điểm xe xuất phát.
a) Tính quãng đường xe đi được sau 5 giây, sau 10 giây.
b) Tính tốc độ trung bình của xe trong khoảng thời gian từ \(t = 0\) đến \(t = 10\).
Gọi \(s\left( t \right)\) (m) là quãng đường ô tô đi được sau \(t\) giây.
Ta có \(s\left( t \right)\) là nguyên hàm của \(v\left( t \right)\).
a) Quãng đường xe đi được sau 5 giây là \(s\left( 5 \right) - s\left( 0 \right) = \int\limits_0^5 {v\left( t \right)dt} \)
Quãng đường xe đi được sau 10 giây là \(s\left( {10} \right) - s\left( 0 \right) = \int\limits_0^{10} {v\left( t \right)dt} \)
b) Tốc độ trung bình của xe là \({v_{tb}} = \frac{s}{t}\), với \(s\) là quãng đường xe đi được trong khoảng thời gian \(t = 10\) giây.
Advertisements (Quảng cáo)
a) Gọi \(s\left( t \right)\) (m) là quãng đường ô tô đi được sau \(t\) giây.
Ta có \(s\left( t \right)\) là nguyên hàm của \(v\left( t \right)\).
a) Quãng đường xe đi được sau 5 giây là
\(s\left( 5 \right) - s\left( 0 \right) = \int\limits_0^5 {v\left( t \right)dt} = \int\limits_0^5 {\left( {2t - 0,03{t^2}} \right)dt} = \left. {\left( {{t^2} - 0,01{t^3}} \right)} \right|_0^5\)
\( = \left( {{5^2} - 0,{{01.5}^3}} \right) - \left( {{0^2} - 0,{{01.0}^3}} \right) = 23,75\)
Quãng đường xe đi được sau 10 giây là
\(s\left( {10} \right) - s\left( 0 \right) = \int\limits_0^{10} {v\left( t \right)dt} = \int\limits_0^{10} {\left( {2t - 0,03{t^2}} \right)dt} = \left. {\left( {{t^2} - 0,01{t^3}} \right)} \right|_0^{10}\)
\( = \left( {{{10}^2} - 0,{{01.10}^3}} \right) - \left( {{0^2} - 0,{{01.0}^3}} \right) = 90\)
b) Tốc độ trung bình của xe trong khoảng thời gian từ \(t = 0\) đến \(t = 10\) là:
\({v_{tb}} = \frac{s}{t} = \frac{{90}}{{10}} = 9\)\(\left( {{\rm{m/s}}} \right)\)