Câu hỏi/bài tập:
Một ô tô đang chạy với tốc độ \(19{\rm{ m/s}}\) thì hãm phanh và chuyển động chậm dần với tốc độ \(v\left( t \right) = 19 - 2t{\rm{ }}\left( {{\rm{m/s}}} \right)\). Kể từ khi hãm phanh, quãng đường ô tô đi được sau 1 giây, 2 giây, 3 giây là bao nhiêu?
Gọi \(s\left( t \right)\) là quãng đường ô tô đi được kể từ khi hãm phanh cho đến thời điểm \(t\) giây.
Do \(s’\left( t \right) = v\left( t \right)\), nên \(s\left( t \right) = \int {v\left( t \right)dt} \). Do mốc thời gian được tính kể từ khi hãm phanh, nên \(s\left( 0 \right) = 0\). Từ đó ta tìm được hàm \(s\left( t \right)\). Quãng đường ô tô đi được sau 1 giây, 2 giây, 3 giây lần lượt là \(s\left( 1 \right)\), \(s\left( 2 \right)\), \(s\left( 3 \right)\).
Gọi \(s\left( t \right)\) là quãng đường ô tô đi được kể từ khi hãm phanh cho đến thời điểm \(t\) giây.
Do \(s’\left( t \right) = v\left( t \right)\), nên
Advertisements (Quảng cáo)
\(s\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {19 - 2t} \right)dt} = 19\int {dt} - \int {2tdt} = 19t - {t^2} + C\).
Mặt khác, do mốc thời gian được tính kể từ khi hãm phanh, nên \(s\left( 0 \right) = 0\).
Suy ra \(19.0 - {0^2} + C = 0 \Rightarrow C = 0\).
Vậy quãng đường ô tô đi được kể từ khi hãm phanh cho đến thời điểm \(t\) giây là \(s\left( t \right) = 19t - {t^2}\).
Quãng đường ô tô đi được sau 1 giây hãm phanh là \(s\left( 1 \right) = 19.1 - {1^2} = 18{\rm{ }}\left( {\rm{m}} \right)\).
Quãng đường ô tô đi được sau 2 giây hãm phanh là \(s\left( 2 \right) = 19.2 - {2^2} = 34{\rm{ }}\left( {\rm{m}} \right)\).
Quãng đường ô tô đi được sau 3 giây hãm phanh là \(s\left( 1 \right) = 19.3 - {3^2} = 48{\rm{ }}\left( {\rm{m}} \right)\).