Trang chủ Lớp 12 SGK Toán 12 - Cùng khám phá Bài tập 1.34 trang 46 Toán 12 tập 1 – Cùng khám...

Bài tập 1.34 trang 46 Toán 12 tập 1 - Cùng khám phá: Cho hàm số y = - x^3 + 3x + 1. Khảo sát sự biến thiên...

Tìm tập xác định của hàm số Xét sự biến thiên của hàm số Vẽ đồ thị. Hướng dẫn trả lời - Bài 1.34 trang 46 SGK Toán 12 tập 1 - Cùng khám phá - Bài tập cuối chương 1. Cho hàm số \(y = - {x^3} + 3x + 1\). Khảo sát sự biến thiên, vẽ đồ thị và chỉ ra tâm đối xứng của đồ thị hàm số đã cho...

Question - Câu hỏi/Đề bài

Cho hàm số \(y = - {x^3} + 3x + 1\). Khảo sát sự biến thiên, vẽ đồ thị và chỉ ra tâm đối xứng của đồ thị hàm số đã cho.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

- Tìm tập xác định của hàm số

- Xét sự biến thiên của hàm số

- Vẽ đồ thị.

- Tính đạo hàm cấp hai và tìm điểm uốn của đồ thị hàm số.

Answer - Lời giải/Đáp án

- Tập xác định: D = R.

- Sự biến thiên:

Giới hạn:

\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( { - {x^3} + 3x + 1} \right) = - \infty \)

\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( { - {x^3} + 3x + 1} \right) = \infty \)

Ta có:

\({y^\prime } = - 3{x^2} + 3\)

Advertisements (Quảng cáo)

\({y^\prime } = 0 \leftrightarrow - 3{x^2} + 3 = 0 \leftrightarrow x = \pm 1\)

Bảng biến thiên:

Chiều biến thiên: Hàm số nghịch biến trên các khoảng (−∞,-1) và (1,∞), đồng biến trên khoảng (-1,1).

Cực trị: Hàm số đạt cực tiểu tại \(x = - 1,{y_{CT}} = - 1\)

Hàm số đạt cực đại tại \(x = 1,{y_{CD}} = 3\)

- Vẽ đồ thị:

Giao điểm với trục Oy là (0,1).

Giao điểm với trục Ox là (-1,53;0), (-0,53;0) và (1,88;0).

- Tính đạo hàm bậc hai: \(f”(x) = - 6x\)

- Giải phương trình \(f”(x) = 0\): \( - 6x = 0 \Leftrightarrow x = 0\)

\(x = 0 \to f(0) = 1\)

Vậy (0,1) là tâm đối xứng của đồ thị hàm số đã cho.

Advertisements (Quảng cáo)