Cho hàm số \(y = f(x) = {x^3} - 3{x^2} + 3\)
a) Sử dụng phần mềm GeoGebra vẽ đồ thị (C) của hàm số đã cho.
b) Tìm nghiệm gần đúng (làm tròn đến hàng phần trăm) của phương trình \(f(x) = 0\)
c) Dựa vào đồ thị đã vẽ ở câu a, biện luận theo tham số m số nghiệm của phương trình \({x^3} - 3{x^2} + 3 = m\).
a) Mở GeoGebra và nhập hàm số f(x).
b) Sử dụng câu lệnh Nghiem( Đa thức ) để tìm các nghiệm gần đúng.
c)
- Tạo thanh trượt m và vẽ hàm số y = m
- Quan sát và biện luận
a)
- Mở GeoGebra và nhập hàm số \(f(x) = {x^3} - 3{x^2} + 3\)
- Đồ thị của hàm số sẽ trông như sau:
b) Sử dụng câu lệnh Nghiem(Đa thức) để tìm các điểm mà đồ thị cắt trục x sẽ ra được kết quả như sau:
Advertisements (Quảng cáo)
Từ đó, ta thấy phương trình \(f(x) = 0\) có các nghiệm là: \({x_1} \approx - 0.88,{x_2} \approx 1.35,{x_3} \approx 2.53\)
c)
- Tạo thanh trượt m với m nằm trong khoảng (-5,5)
- Vẽ đồ thị hàm số y = m
- Số giao điểm của hai đồ thị sẽ là nghiệm của phương trình \({x^3} - 3{x^2} + 3 = m\)(*)
- Kéo thanh trượt m ta sẽ thấy sự thay đổi của các nghiệm
Với \(m > 3\), phương trình (*) có 1 nghiệm.
Với \(m = 3\), phương trình (*) có 2 nghiệm.
Với \( - 1
Với \(m = - 1\), phương trình (*) có 2 nghiệm.
Với \(m