Sử dụng công thức tích vô hướng: \(\vec a \cdot \vec b = {x_a} \cdot {x_b} + {y_a} \cdot {y_b} + {z_a} \cdot {z_b}\). Vận dụng kiến thức giải - Bài 2.38 trang 84 SGK Toán 12 tập 1 - Cùng khám phá - Bài tập cuối chương 2. Tích vô hướng của hai vectơ \(\vec a = (1;1;1)\) và \(\vec b = ( - 1;2;1)\) bằng: A. \(\sqrt 3 \cdot \sqrt 6 \). B. \( - \sqrt 3 \cdot \sqrt 6 \). C. \(2\). D. \(\sqrt 2 \)...
Tích vô hướng của hai vectơ \(\vec a = (1;1;1)\) và \(\vec b = ( - 1;2;1)\) bằng:
A. \(\sqrt 3 \cdot \sqrt 6 \).
B. \( - \sqrt 3 \cdot \sqrt 6 \).
C. \(2\).
D. \(\sqrt 2 \).
Advertisements (Quảng cáo)
Sử dụng công thức tích vô hướng:
\(\vec a \cdot \vec b = {x_a} \cdot {x_b} + {y_a} \cdot {y_b} + {z_a} \cdot {z_b}\)
Tích vô hướng của \(\vec a\) và \(\vec b\):
\(\vec a \cdot \vec b = 1 \cdot ( - 1) + 1 \cdot 2 + 1 \cdot 1 = - 1 + 2 + 1 = 2\)
Chọn C.