Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Bài tập 5.43 trang 62 Toán 12 tập 2 – Kết nối...

Bài tập 5.43 trang 62 Toán 12 tập 2 - Kết nối tri thức: Trong không gian Oxyz, cho điểm A(1;0;2) và hai đường thẳng d...

Sử dụng kiến thức về vị trí tương đối của hai đường thẳng để tìm vị trí tương đối của hai đường thẳng. Phân tích và giải Giải bài tập 5.43 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức - Bài tập cuối chương 5 . Trong không gian Oxyz, cho điểm A(1;0;2) và hai đường thẳng d:

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Trong không gian Oxyz, cho điểm A(1;0;2) và hai đường thẳng d: x1=y12=z2, d:x+12=y+22=z31.

a) Xét vị trí tương đối của hai đường thẳng d và d’.

b) Viết phương trình đường thẳng Δ đi qua A và song song với đường thẳng d.

c) Viết phương trình mặt phẳng (P) chứa A và d.

d) Tìm giao điểm của đường thẳng d với mặt phẳng (Oxz).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Sử dụng kiến thức về vị trí tương đối của hai đường thẳng để tìm vị trí tương đối của hai đường thẳng: Trong không gian Oxyz, cho hai đường thẳng Δ1,Δ2 lần lượt đi qua các điểm A1(x1;y1;z1),A2(x2;y2;z2) và tương ứng có vectơ chỉ phương u1=(a1;b1;c1),u2=(a2;b2;c2). Khi đó:

Δ1//Δ2 u1 cùng phương với u2A1Δ2

Δ1Δ2 u1 cùng phương với u2A1Δ2

Δ1Δ2 chéo nhau A1A2.[u1,u2]0

Δ1Δ2 cắt nhau {[u1,u2]0A1A2.[u1,u2]=0

b) Sử dụng kiến thức về phương trình tham số của đường thẳng để viết phương trình tham số đường thẳng: Trong không gian Oxyz, cho đường thẳng Δ đi qua điểm A(x0;y0;z0) và có vectơ chỉ phương u=(a;b;c). Hệ phương trình {x=x0+aty=y0+btz=z0+ct được gọi là phương trình tham số của đường thẳng Δ (t là tham số, tR).

c) Sử dụng kiến thức về lập phương trình mặt phẳng đi qua một điểm và biết cặp vectơ chỉ phương: Trong không gian Oxyz, bài toán viết phương trình mặt phẳng đi qua điểm M và biết cặp vectơ chỉ phương u,v có thể thực hiện theo các bước sau:

+ Tìm vectơ pháp tuyến là n=[u,v].

+ Lập phương trình tổng quát của mặt phẳng đi qua M và biết vectơ pháp tuyến là n=[u,v].

d) + Viết phương trình mặt phẳng (Oxz).

Advertisements (Quảng cáo)

+ Viết phương trình tham số của đường thẳng d.

+ Tìm tọa độ giao điểm của đường thẳng d và mặt phẳng (Oxz) theo t.

+ Thay tọa độ tính theo t vào phương trình mặt phẳng (Oxz) tìm t.

+ Tìm lại tọa độ giao điểm.

Answer - Lời giải/Đáp án

a) Đường thẳng d nhận u1(1;2;2) làm một vectơ chỉ phương và đi qua điểm C(0;1;0).

Đường thẳng d’ nhận u2(2;2;1) làm một vectơ chỉ phương và đi qua điểm B(1;2;3)

Ta có: CB(1;3;3), [u1;u2]=(|2221|;|2112|;|1222|)=(6;5;2)0

[u1;u2].CB=(6).(1)+5.(3)+(2).3=6156=150 nên d, d’ chéo nhau.

b) Đường đường thẳng Δ đi qua A và nhận u1(1;2;2) làm một vectơ chỉ phương nên phương trình tham số đường thẳng Δ là: {x=1+ty=2tz=2+2t

c) Vì 11012 nên điểm A(1;0;2) không thuộc đường thẳng d. C(0;1;0).u1(1;2;2)

Ta có: AC(1;1;2), [AC;u1]=(|1222|;|2121|;|1112|)=(6;0;3)

Mặt phẳng (P) đi qua A(1;0;2) và nhận 13[AC;u1]=(2;0;1) làm một vectơ pháp tuyến nên phương trình mặt phẳng (P) là: 2(x1)(z2)=02xz=0

d) Phương trình mặt phẳng (Oxz) là: y=0

Phương trình tham số của đường thẳng (d) là: {x=ty=1+2tz=2t. Tọa độ giao điểm của đường thẳng d với mặt phẳng (Oxz) là (t;1+2t;2t).

Thay x=t,y=1+2t,z=2t vào phương trình mặt phẳng (Oxz) ta có: 1+2t=0t=12

Do đó, giao điểm của đường thẳng d với mặt phẳng (Oxz) là: (12;0;1).

Advertisements (Quảng cáo)