Câu hỏi/bài tập:
Trong không gian Oxyz, cho mặt phẳng \(\left( \alpha \right):x + 2 = 0\).
a) Điểm \(A\left( { - 2;1;0} \right)\) có thuộc \(\left( \alpha \right)\) hay không?
b) Hãy chỉ ra một vectơ pháp tuyến của \(\left( \alpha \right)\).
Advertisements (Quảng cáo)
Sử dụng kiến thức về phương trình tổng quát của mặt phẳng để giải: Trong không gian Oxyz, mỗi phương trình \(Ax + By + Cz + D = 0\) (các hệ số A, B, C không đồng thời bằng 0) xác định một mặt phẳng nhận \(\overrightarrow n = \left( {A;B;C} \right)\) làm một vectơ pháp tuyến.
a) Vì \( - 2 + 2 = 0\) nên điểm \(A\left( { - 2;1;0} \right)\) thuộc \(\left( \alpha \right)\).
b) Mặt phẳng \(\left( \alpha \right)\) nhận \(\overrightarrow n \left( {1;0;0} \right)\) làm một vectơ pháp tuyến.