Câu hỏi/bài tập:
Trong không gian Oxyz, tính góc giữa đường thẳng \(\Delta \) và mặt phẳng (P), với:
\(\Delta :\frac{{x + 2}}{{ - 1}} = \frac{{y - 4}}{2} = \frac{{z + 1}}{1},\left( P \right):x - y + z - 1 = 0\).
Sử dụng kiến thức về góc giữa đường thẳng và mặt phẳng để tính: Trong không gian Oxyz, cho đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) và mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right)\).
Advertisements (Quảng cáo)
Khi đó: \(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {aA + bB + cC} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} .\sqrt {{A^2} + {B^2} + {C^2}} }}\)
Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( { - 1;2;1} \right)\), mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n = \left( {1; - 1;1} \right)\). Ta có: \(\sin \left( {\Delta ,\left( P \right)} \right) = \frac{{\left| {\left( { - 1} \right).1 + 2.\left( { - 1} \right) + 1.1} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{{\sqrt 2 }}{3}\)
Do đó, góc giữa đường thẳng \(\Delta \) và mặt phẳng (P) khoảng \(28,{1^0}\).