Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Trong không gian Oxyz, tính góc giữa đường thẳng (Delta ) và...

Trong không gian Oxyz, tính góc giữa đường thẳng \(\Delta \) và mặt phẳng (P), với: \(\Delta...

Sử dụng kiến thức về góc giữa đường thẳng và mặt phẳng để tính: Trong không gian Oxyz. Vận dụng kiến thức giải Câu hỏi Luyện tập 2 trang 51 SGK Toán 12 Kết nối tri thức - Bài 16. Công thức tính góc trong không gian.

Câu hỏi/bài tập:

Trong không gian Oxyz, tính góc giữa đường thẳng \(\Delta \) và mặt phẳng (P), với:

\(\Delta :\frac{{x + 2}}{{ - 1}} = \frac{{y - 4}}{2} = \frac{{z + 1}}{1},\left( P \right):x - y + z - 1 = 0\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về góc giữa đường thẳng và mặt phẳng để tính: Trong không gian Oxyz, cho đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) và mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right)\).

Advertisements (Quảng cáo)

Khi đó: \(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {aA + bB + cC} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} .\sqrt {{A^2} + {B^2} + {C^2}} }}\)

Answer - Lời giải/Đáp án

Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( { - 1;2;1} \right)\), mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n = \left( {1; - 1;1} \right)\). Ta có: \(\sin \left( {\Delta ,\left( P \right)} \right) = \frac{{\left| {\left( { - 1} \right).1 + 2.\left( { - 1} \right) + 1.1} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{{\sqrt 2 }}{3}\)

Do đó, góc giữa đường thẳng \(\Delta \) và mặt phẳng (P) khoảng \(28,{1^0}\).

Advertisements (Quảng cáo)