Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Xét hình phẳng giới hạn bởi đồ thị (y = fleft( x...

Xét hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right) = x + 1\), trục hoành và hai đường thẳng \(x = - 2...

Sử dụng kiến thức về tính chất của tích phân để tính: Cho f(x). Trả lời Câu hỏi Hoạt động 1 trang 19 SGK Toán 12 Kết nối tri thức - Bài 13. Ứng dụng hình học của tích phân.

Câu hỏi/bài tập:

Xét hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right) = x + 1\), trục hoành và hai đường thẳng \(x = - 2,x = 1\) (H.4.12).

a) Tính diện tích S của hình phẳng này.

b) Tính \(\int\limits_{ - 2}^1 {\left| {f\left( x \right)} \right|dx} \) và so sánh với S.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng kiến thức về tính chất của tích phân để tính: Cho f(x), g(x) là các hàm số liên tục trên đoạn [a; b]. Khi đó, ta có: \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \) \(\left( {a < c < b} \right)\).

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) Đặt tên các điểm như hình vẽ. Khi đó, \(AD = 1,DE = 1,AC = 2,CB = 2\)

Diện tích S của hình phẳng là:

\(S = {S_{\Delta EAD}} + {S_{\Delta ABC}} = \frac{1}{2}AD.DE + \frac{1}{2}AC.BC = \frac{1}{2}.1.1 + \frac{1}{2}.2.2 = \frac{1}{2} + 2 = \frac{5}{2}\)

b) \(\int\limits_{ - 2}^1 {\left| {f\left( x \right)} \right|dx} = \int\limits_{ - 2}^1 {\left| {x + 1} \right|dx} = \int\limits_{ - 2}^{ - 1} {\left| {x + 1} \right|dx} + \int\limits_{ - 1}^1 {\left| {x + 1} \right|dx = - \int\limits_{ - 2}^{ - 1} {\left( {x + 1} \right)dx} + \int\limits_{ - 1}^1 {\left( {x + 1} \right)dx} } \)

\( = - \left( {\frac{{{x^2}}}{2} + x} \right)\left| \begin{array}{l} - 1\\ - 2\end{array} \right. + \left( {\frac{{{x^2}}}{2} + x} \right)\left| \begin{array}{l}1\\ - 1\end{array} \right. = \left( {\frac{1}{2} + 1 - \frac{1}{2} + 1} \right) - \left( {\frac{{{1^2}}}{2} - 1 - \frac{{{{\left( { - 2} \right)}^2}}}{2} + 2} \right) = 2 + \frac{1}{2} = \frac{5}{2}\)

Advertisements (Quảng cáo)