Cho tứ diện ABCD có thể tích bằng V. Gọi B' và D' lần lượt là trung điểm của AB và AD. Mặt phắng (CB'D') chia khối tứ diện thành hai phần. Tính thể tích mỗi phần đó.. Bài 1 trang 30 SGK Hình học 12 Nâng cao - Ôn tập chương I - Khối đa diện và thể tích của chúng
Bài 1. Cho tứ diện \(ABCD\) có thể tích bằng \(V\). Gọi \(B’\) và \(D’\) lần lượt là trung điểm của \(AB\) và \(AD\). Mặt phắng \((CB’D’)\) chia khối tứ diện thành hai phần. Tính thể tích mỗi phần đó.
Mp \((CB’D’)\) chia khối tứ diện thành hai khối chóp \(C.AB’D’\) và \(C.BB’D’D\). Hai khối chóp này có chiều cao bằng nhau.
Mặt khác: \({S_{AB’D’}} = {1 \over 4}{S_{ABD}} \Rightarrow {V_{C.AB’D’}} = {1 \over 4}V\)
Do đó \({V_{C.BB’D’D}} = {3 \over 4}V\)