Trang chủ Lớp 12 Toán lớp 12 Nâng cao (sách cũ) Bài 21 trang 60 SGK Hình học 12 Nâng cao, Cho tam...

Bài 21 trang 60 SGK Hình học 12 Nâng cao, Cho tam giác ABC vuông tại A, AB = c, AB = Tính thể tích của khối tròn xoay sinh bởi tam giác đó (kể cả các điểm trong) khi quay quanh đường thẳng BC....

Cho tam giác ABC vuông tại A, AB = c, AB = b. Tính thể tích của khối tròn xoay sinh bởi tam giác đó (kể cả các điểm trong) khi quay quanh đường thẳng BC.. Bài 21 trang 60 SGK Hình học 12 Nâng cao - Bài 4. Mặt nón hình nón và khối nón

Bài 21. Cho tam giác \(ABC\) vuông tại \(A, AB = c, AB = b\). Tính thể tích của khối tròn xoay sinh bởi tam giác đó (kể cả các điểm trong) khi quay quanh đường thẳng \(BC\).


Gọi \(AH\) là đường cao của tam giác \(ABC\).

Ta có: \({1 \over {A{H^2}}} = {1 \over {A{B^2}}} + {1 \over {A{C^2}}} = {1 \over {{b^2}}} + {1 \over {{c^2}}} \Rightarrow A{H^2} = {{{b^2}{c^2}} \over {{b^2} + {c^2}}}\)

Advertisements (Quảng cáo)

Hai tam giác \(ABH\) và \(ACH\) khi quay quanh \(BC\) lần lượt tạo thành hai khối nón \({H_1},{H_2}\) có thể tích lần lượt là

\({V_1} = {1 \over 3}\pi A{H^2}BH\,\,\,\,{V_2} = {1 \over 3}\pi A{H^2}CH\)

Thể tích của khối tròn xoay sinh bởi tam giác \(ABC\) khi quay quanh \(BC\) là:

\(\eqalign{
& V = {V_1} + {V_2} = {1 \over 3}\pi A{H^2}BH + {1 \over 3}\pi A{H^2}CH = {1 \over 3}\pi A{H^2}BC \cr
& \,\,\,\,\, = {1 \over 3}\pi {{{b^2}{c^2}} \over {{b^2} + {c^2}}}\sqrt {{b^2} + {c^2}} = {{\pi {b^2}{c^2}} \over {3\sqrt {{b^2} + {c^2}} }} \cr} \)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: