Trang chủ Lớp 12 SBT Toán 12 Nâng cao Bài 43 trang 62 Sách bài tập Hình học lớp 12 Nâng...

Bài 43 trang 62 Sách bài tập Hình học lớp 12 Nâng cao: Đường cao của hình nón gấp hai lần bán kính đáy của nó....

Đường cao của hình nón gấp hai lần bán kính đáy của nó. Bài 43 trang 62 Sách bài tập Hình học lớp 12 Nâng cao – Bài 4. Mặt nón hình nón và khối nón

Đường cao của hình nón gấp hai lần bán kính đáy của nó. Tính tỉ số thể tích hình cầu ngoại tiếp và nội tiếp hình nón đó.

Xét mp(P) qua trục SO của hình nón thì (P) cắt hình nón theo tam giác cân SAB, (P) cắt mặt cầu ngoại tiếp và nội tiếp hình nón theo các đường tròn có bán kính lần lượt là R r. Các đường tròn này ngoại tiếp và nội tiếp tam giác cân SAB.

Kí hiệu \({V_1},{V_2}\) là thể tích của các hình cầu đã nêu thì \({{{V_1}} \over {{V_2}}} = {\left( {{R \over r}} \right)^3}.\)

Quảng cáo

Đặt  \(\widehat {SAB}\) =\(\alpha \) và gọi I là tâm đường tròn nội tiếp \(\Delta SAB\) thì

\(2R = \) \(\frac{{AB}}{{\sin \widehat {{\rm{AS}}B}}}\)=\({{AB} \over {\sin 2\alpha }}\) và \(r = IO = {{AB} \over 2}\tan {\alpha  \over 2}.\)

Từ đó \({R \over r} = {1 \over {\sin 2\alpha \tan {\alpha  \over 2}}}.\)

Mặt khác \(\tan \alpha  = {{SO} \over {AO}} = 2,\) vậy

\(\eqalign{  & \sin 2\alpha  = {{2\tan \alpha } \over {1 + {{\tan }^2}\alpha }} = {4 \over 5};2 = \tan \alpha  = {{2\tan {\alpha  \over 2}} \over {1 – {{\tan }^2}{\alpha  \over 2}}}  \cr  &  \Rightarrow \tan {\alpha  \over 2} = {{\sqrt 5  – 1} \over 2} \cr} \)

( do \(\tan {\alpha  \over 2} > 0)\).

Như vậy \({R \over r} = {{5\left( {\sqrt 5  + 1} \right)} \over 8},\) tức là \({{{V_1}} \over {{V_2}}} = {{125{{\left( {\sqrt 5  + 1} \right)}^3}} \over {512}} \)

Quảng cáo