Bài 35. Tìm các tiệm cận của đồ thị hàm số sau:
a)y=2x−1x2+x−3; b)x3+2x2−2x
c)x3+x+1x2−1; d)x2+x+1−5x2−2x+3
a) TXĐ: D=R∖{0}
* Vì lim nên x = 0 là tiệm cận đứng.
* \mathop {\lim }\limits_{x \to \pm \infty } \left[ {y - \left( {x - 3} \right)} \right] = \mathop {\lim }\limits_{x \to \pm \infty } {{2x - 1} \over {{x^2}}} = \mathop {\lim }\limits_{x \to \pm \infty } \left( {{2 \over x} - {1 \over {{x^2}}}} \right) = 0 nên y = x – 3 là tiệm cận xiên.
b) TXĐ: D =\mathbb R\backslash \left\{ {0;2} \right\}
* \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} = - \infty và \mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} = + \infty nên x = 0 là tiệm cận đứng.
* \mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} = + \infty và \mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} = - \infty nên x = 2 là tiệm cận đứng.
* Tiệm cận xiên có dạng y = ax +b
Advertisements (Quảng cáo)
\eqalign{ & a = \mathop {\lim }\limits_{x \to \pm \infty } {y \over x} = \mathop {\lim }\limits_{x \to \pm \infty } {{{x^3} + 2} \over {{x^3} - 2{x^2}}} = \mathop {\lim }\limits_{x \to \pm \infty } {{1 + {2 \over {{x^3}}}} \over {1 - {2 \over x}}} = 1 \cr & b = \mathop {\lim }\limits_{x \to \pm \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \left( {{{{x^3} + 2} \over {{x^2} - 2x}} - x} \right) = \mathop {\lim }\limits_{x \to \pm \infty } {{2{x^2} + 2} \over {{x^2} - 2x}} = 2 \cr}
Đường thẳng y = x + 2 là tiệm cận xiên của đồ thị.
c) TXĐ: D =\mathbb R\backslash \left\{ { - 1;1} \right\}
* \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = + \infty và \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = - \infty nên x = -1 là tiệm cận đứng .
\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} = - \infty và \mathop {\lim }\limits_{x \to {1^ - }} y = - \infty nên x = 1 là tiệm cận đứng.
* Tiệm cận xiên có dạng y = ax + b
\eqalign{ & a = \mathop {\lim }\limits_{x \to \pm \infty } {y \over x} = \mathop {\lim }\limits_{x \to \pm \infty } {{{x^3} + x + 1} \over {x\left( {{x^2} - 1} \right)}} = \mathop {\lim }\limits_{x \to \pm \infty } {{1 + {1 \over {{x^2}}} + {1 \over {{x^3}}}} \over {1 - {1 \over {{x^2}}}}} = 1 \cr & b = \mathop {\lim }\limits_{x \to \pm \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to \pm \infty } \left( {{{{x^3} + x + 1} \over {{x^2} - 1}}} \right) = \mathop {\lim }\limits_{x \to \pm \infty } {{2x + 1} \over {{x^2} - 1}} = 0 \cr}
\Rightarrow y = x là tiệm cận xiên.
d) TXĐ: D =\mathbb R\backslash \left\{ { - 1;{3 \over 5}} \right\}
* Vì \mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } {{1 + {1 \over x} + {1 \over {{x^2}}}} \over { - 5 - {2 \over x} + {3 \over {{x^2}}}}} = - {1 \over 5} nên y = - {1 \over 5} là tiệm cận ngang.
* \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} = + \infty và \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = - \infty nên x = -1 là tiệm cận đứng.
\mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ + }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} = - \infty và \mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ - }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} = + \infty nên x = {3 \over 5} là tiệm cận đứng.