Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Bài 12 trang 27 SGK Hình 12: Cho hình lập phương ABCD.A’B’C’D’...

Bài 12 trang 27 SGK Hình 12: Cho hình lập phương ABCD.A’B’C’D’ cạnh a....

Bài 12 trang 27 SGK Hình học 12: Ôn tập chương I. Cho hình lập phương ABCD.A’B’C’D’ cạnh a.

Bài 12. Cho hình lập phương \(ABCD.A’B’C’D’\) cạnh \(a\). Gọi \(M\) là trung điểm của \(A’B’, N\) là trung điểm của \(BC\).

a) Tính thể tích khối tứ diện \(ADMN\).

b) Mặt phẳng \((DMN)\) chia khối lập phương đã cho thành hai khối đa diện. Gọi \((H)\) là khối đa diện chứa đỉnh \(A, (H’)\) là khối đa diện còn lại. Tính tỉ số \({{{V_{(H)}}} \over {{V_{(H’)}}}}\).

a) Ta tính thể tích hình chóp \(M.ADN\). Hình chóp này có chiều cao bằng \(a\) và diện tích đáy \(AND\) bằng \({{{a^2}} \over 2}\)

\(V_{ADMN}\) = \({1 \over 3}\) . a . \({{{a^2}} \over 2}\) = \({{{a^3}} \over 6}\)

b) Trước hết, ta dựng thiết diện của hình lập phương khi cắt bởi \((DMN)\).

Do \((ABCD) // (A’B’C’D’)\) nên \((DMN)\) cắt \((A’B’C’D’)\) theo một giao tuyến song song với \(DN\). Ta dựng thiết diện như sau:

- Từ \(M\) kẻ đường thẳng song song với \(DN\), đường này cắt cạnh \(A’D’\) tại điểm \(P\) và cắt đường thẳng \(C’B’\) tại điểm \(Q\). Trong mặt phẳng \((BCC’B’)\) thì \(QN\) cắt cạnh \(BB’\) tại điểm \(R\); đa giác \(DNRMP\)  chính là thiết diện của hình lập phương khi cắt bởi \((DMN)\).

- Bây giờ ta tính thể tích khối đa diện \(ABNDPMR\). Thể tích này có thể coi là thể tích của ba hình chóp:

          \(V_1\) là thể tích hình chóp đáy \(ABND\), đỉnh \(M\);

          \(V_2\)  là thể tích hình chóp đáy \(AA’PD\), đỉnh \(M\);

Advertisements (Quảng cáo)

          \(V_3\) là thể tích hình chóp đáy \(NRB\), đỉnh \(M\).

Hình chóp \(M.ABND\), có đường cao bằng \(a\), diện tích đáy là hình thang \(ABND\) là:

\({1 \over 2}\left( {{a \over 2} + a} \right).a = {{3{a^2}} \over 4}\)

Suy ra: \({V_1} = {1 \over 3}.{{3{a^2}} \over 4}.a \Rightarrow {V_1} = {{{a^3}} \over 4}\)

 \(A’P\) = \({a \over 4}\). Hình chóp \(M.AA’PD\) có chiều cao \({a \over 2}\) và diện tích hình thang \(AA’PD\) là: \({1 \over 2}\left( {{a \over 4} + a} \right).a = {{5{a^2}} \over 8}\)

Suy ra: \({V_2} = {1 \over 3}.{a \over 2}.{{5{a^2}} \over 8} \Rightarrow {V_2} = {{5{a^2}} \over {48}}\)

\(BR\) = \({2 \over 3}a\). Diện tích tam giác \(NRB\) là: \({1 \over 2}.{2 \over 3}a.{a \over 2} = {{{a^2}} \over 6}\)

Hình chóp \(M.NRB\) có chiều cao \({a \over 2}\) và diện tích đáy \({{{a^2}} \over 6}\) nên:

\({V_2} = {1 \over 3}.{a \over 2}.{{{a^2}} \over 6} \Rightarrow {V_3} = {{{a^3}} \over {36}}\)

\({V_{ABNDPMR}} = {V_1} + {V_2} + {V_3} = {{5{a^3}} \over {48}} + {{{a^3}} \over 4} + {{{a^3}} \over {36}} = {{55{a^3}} \over {144}}\)

Thể tích phần còn lại là: \({{144{a^3}} \over {144}} - {{55{a^3}} \over {144}} = {{89{a^3}} \over {144}}\)

Từ đây suy ra tỉ số cần tìm là: \({{55} \over {89}}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)