Bài 4. Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường sau quay quanh trục \(Ox\):
a) \(y = 1 - x^2\), \(y = 0\) ;
b) \(y = cosx, y = 0, x = 0, x = π\) ;
c) \(y = tanx, y = 0, x = 0\), \(x=\frac{\pi }{4}\) ;
Hướng dẫn giải:
a) Phương trình hoành độ giao điểm \(1 - x^2= 0 ⇔ x = ±1\).
Thể tích cần tìm là :
\(V=\pi \int_{-1}^{1}(1-x^{2})^{2}dx=2\pi \int_{0}^{1}(x^{4}-2x^{2}+1)dx\)
Advertisements (Quảng cáo)
\(=2\pi \left (\frac{x^{4}}{5}- \frac{2}{3}x^{3}+x \right )|_{0}^{1}=2\pi\left ( \frac{1}{5}-\frac{2}{3}+1 \right )=\frac{16}{15}\pi\)
b) Thể tích cần tìm là :
\(V= \pi \int_{0}^{\pi }cos^{2}xdx =\frac{\pi }{2}\int_{0}^{\pi}(1+cos2x)dx\)
\(=\frac{\pi }{2}\left (x+\frac{1}{2}sin2x \right )|_{0}^{\pi }=\frac{\pi }{2}\pi =\frac{\pi ^{2}}{2}\)
c) Thể tích cần tìm là :
\(V=\pi\int_{0}^{\frac{\pi }{4}}tan^{2}xdx=\pi\int_{0}^{\frac{\pi }{4} }\left (\frac{1}{cos^{2}x}-1 \right )dx\)
\(=\pi \left (tanx-x \right )|_{0}^{\frac{\pi }{4}}=\pi (1-\frac{\pi }{4})\).