Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Bài tập 4 trang 121 – SGK Giải tích 12: Bài 3....

Bài tập 4 trang 121 - SGK Giải tích 12: Bài 3. Ứng dụng của tích phân trong hình học....

Bài tập 4 - Trang 121 - SGK Giải tích 12: Bài 3. Ứng dụng của tích phân trong hình học.. 4. Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường sau quay quanh trục Ox.

Bài 4. Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường sau quay quanh trục \(Ox\):

a) \(y = 1 - x^2\), \(y = 0\) ;

b) \(y = cosx, y = 0, x = 0, x = π\) ;

c) \(y = tanx, y = 0, x = 0\), \(x=\frac{\pi }{4}\) ;

Hướng dẫn giải:

a) Phương trình hoành độ giao điểm \(1 - x^2= 0 ⇔ x = ±1\).

Thể tích cần tìm là :

\(V=\pi \int_{-1}^{1}(1-x^{2})^{2}dx=2\pi \int_{0}^{1}(x^{4}-2x^{2}+1)dx\)

Advertisements (Quảng cáo)

     \(=2\pi \left (\frac{x^{4}}{5}- \frac{2}{3}x^{3}+x \right )|_{0}^{1}=2\pi\left ( \frac{1}{5}-\frac{2}{3}+1 \right )=\frac{16}{15}\pi\)

b) Thể tích cần tìm là :

\(V= \pi \int_{0}^{\pi }cos^{2}xdx =\frac{\pi }{2}\int_{0}^{\pi}(1+cos2x)dx\)

     \(=\frac{\pi }{2}\left (x+\frac{1}{2}sin2x \right )|_{0}^{\pi }=\frac{\pi }{2}\pi =\frac{\pi ^{2}}{2}\)

c) Thể tích cần tìm là :

\(V=\pi\int_{0}^{\frac{\pi }{4}}tan^{2}xdx=\pi\int_{0}^{\frac{\pi }{4} }\left (\frac{1}{cos^{2}x}-1 \right )dx\)

     \(=\pi \left (tanx-x \right )|_{0}^{\frac{\pi }{4}}=\pi (1-\frac{\pi }{4})\).

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)