Trang chủ Lớp 12 Toán lớp 12 (sách cũ) Bài 5 trang 121 Giải tích 12: Bài 3. Ứng dụng của...

Bài 5 trang 121 Giải tích 12: Bài 3. Ứng dụng của tích phân trong hình học....

Bài 5 trang 121 SGK Giải tích 12: Bài 3. Ứng dụng của tích phân trong hình học.. 5. Cho tam giác vuông OPM có cạnh OP nằm trên trục Ox.Tính thể tích của khối tròn xoay.

Bài 5. Cho tam giác vuông \(OPM\) có cạnh \(OP\) nằm trên trục \(Ox\). Đặt  \(\widehat {POM} = \alpha \)

và \(OM = R\), \(\left( {0 \le \alpha  \le {\pi  \over 3},R > 0} \right)\)

Gọi   là khối tròn xoay thu được khi quay tam giác đó xung quanh \(Ox\) (H.63).

a) Tính thể tích của  theo \(α\) và \(R\).      

b) Tìm \(α\) sao cho thể tích  là lớn nhất.  

  

Hướng dẫn giải :

a) Hoành độ điểm \(P\) là : 

Advertisements (Quảng cáo)

\(x_p=  OP = OM. cos α = R.cosα\)

Phương trình đường thẳng \(OM\) là \(y =  tanα.x\). Thể tích \(V\) của khối tròn xoay là:

\(V = \pi \int\limits_0^{R\cos \alpha } {{{\tan }^2}\alpha {{{x^3}} \over 3}\left| {_0^{R\cos \alpha } = {{\pi .{R^3}} \over 3}(\cos \alpha  - {{\cos }^3}} \right.} \alpha )\)

b) Đặt \(t = cosα \Rightarrow t ∈ \left[ {{1 \over 2};1} \right]\). \(\left( \text{ vì }{\alpha  \in \left[ {0;{\pi  \over 3}} \right]} \right)\),  \(α = arccos t\).

Ta có :

\(\eqalign{
& V = {{\pi {R^3}} \over 3}(t - {t^3});V’ = {{\pi {R^3}} \over 3}(1 - 3{t^2}) \cr
& V’ = 0 \Leftrightarrow \left[ \matrix{
t = {{\sqrt 3 } \over 3} \hfill \cr
t = {{ - \sqrt 3 } \over 3}\text{ (loại)} \hfill \cr} \right. \cr} \)

 Từ đó suy ra \(V\) lớn nhất bằng \({{2\sqrt 3 \pi R^3} \over 27}\) \(\Leftrightarrow t = {{\sqrt 3 } \over 3} \Leftrightarrow \alpha  = \arccos {{\sqrt 3 } \over 3}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 12 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)