Trang chủ Lớp 6 SBT Toán lớp 6 (sách cũ) Câu 213 trang 33 Sách Bài Tập (SBT) Toán 6 tập 1:...

Câu 213 trang 33 Sách Bài Tập (SBT) Toán 6 tập 1: Có 133 quyển vở, 80 bút bi, 170 tập giấy. Người ta chia vở, bút bi,...

Có 133 quyển vở, 80 bút bi, 170 tập giấy. Người ta chia vở, bút bi, giấy thành các phần thưởng đều nhau, mỗi phần thưởng đều cả ba loại. Tính xem có bao nhiêu phần thưởng?. Câu 213 trang 33 Sách Bài Tập (SBT) Toán 6 tập 1 - Ôn tập chương I - Ôn tập và bổ túc về số tự nhiên.

Có 133 quyển vở, 80 bút bi, 170 tập giấy. Người ta chia vở, bút bi, giấy thành các phần thưởng đều nhau, mỗi phần thưởng đều cả ba loại. Nhưng sau khi chia còn thừa 13 quyển vở, 8 bút bi, 2 tập giấy không còn đủ chia vào các phần thưởng. Tính xem có bao nhiêu phần thưởng?

Giải

Gọi m (m ∈ N) là số phần thưởng được chia.

Vì sau khi chia còn dư 13 quyển vở nên ta có: m > 13

Số vở được chia: 133 – 13 = 120 (quyển)

Số bút được chia: 80 – 80= 72 (cây)

Số tập giấy được chia: 170 – 2 = 168 (tập)

Advertisements (Quảng cáo)

Vì trong mỗi phần thưởng số vở, bút và giấy bằng nhau nên m là ước chung của 120, 72 và 168.

Ta có \(120 = {2^2}.3.5;72 = {2^3}{.3^2};168 = {2^3}.3.7\)

ƯCLN (120; 72; 168) = 23.3 = 24

ƯC \((120;72;168) = \left\{ {1;2;3;4;6;8;12;24} \right\}\)

Vì m > 13 nên m = 24

Vậy có 24 phần thưởng.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 6 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)