Cho các đẳng thức sau:
a) \({10^2}{.10^3} = {10^6}\);
b) \({(1,2)^8}:{(1,2)^4} = {(1,2)^2}\);
c) \({\left[ {{{\left( { - \dfrac{1}{8}} \right)}^2}} \right]^4} = {\left( { - \dfrac{1}{8}} \right)^6}\);
d) \({\left( {\dfrac{{ - 5}}{7}} \right)^4} = {\left( {\dfrac{{ - 10}}{{49}}} \right)^2}\);
e) \({5^{61}}:{( - {\rm{ 5)}}^{60}} = {\rm{5}}\);
g) \({( - 0,27)^3}.{( - 0,27)^2} = {(0,27)^5}\).
Bạn Đức phát biểu: “Trong các đẳng thức trên, chỉ có một đẳng thức đúng”. Theo em, phát biểu của bạn Đức đúng không? Vì sao?
Muốn biết bạn Đức phát biểu đúng hay không, ta kiểm tra đáp án từng phần.
- Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng các số mũ:
\({x^m}.{x^n} = {x^{m + m}}\).
Advertisements (Quảng cáo)
- Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và lấy số mũ của lũy thừa bị chia trừ đi số mũ của lũy thừa chia:
\({x^m}:{x^n} = {x^{m - n}}\) (x ≠ 0; m ≥ n).
- Khi tính lũy thừa của một lũy thừa, ta giữ nguyên cơ số và nhân hai số mũ:
\({\left( {{x^m}} \right)^n} = {x^{m.n}}\).
Ta có:
a) \({10^2}{.10^3} = {10^{2 + 3}} = {10^5}\);
b) \({(1,2)^8}:{(1,2)^4} = {(1,2)^{8 - 4}} = {(1,2)^4}\);
c) \({\left[ {{{\left( { - \dfrac{1}{8}} \right)}^2}} \right]^4} = {\left( { - \dfrac{1}{8}} \right)^{2.4}} = {\left( { - \dfrac{1}{8}} \right)^8}\);
d) \({\left( {\dfrac{{ - 5}}{7}} \right)^4} = {\left[ {{{\left( {\dfrac{{ - 5}}{7}} \right)}^2}} \right]^2} = {\left( {\dfrac{{25}}{{49}}} \right)^2}\);
e) \({5^{61}}:{( - {\rm{ 5)}}^{60}} = {5^{61}}:{\rm{ }}{{\rm{5}}^{60}}{\rm{ = }}{{\rm{5}}^{61 - 60}}{\rm{ = }}{{\rm{5}}^1}{\rm{ = 5}}\);
g) \({( - 0,27)^3}.{( - 0,27)^2} = {( - 0,27)^{3 + 2}} = {( - 0,27)^5}\).
Vậy bạn Đức phát biểu: “Trong các đẳng thức trên, chỉ có một đẳng thức đúng” là đúng: chỉ có đẳng thức e) là đúng.