Trang chủ Lớp 7 SBT Toán 7 - Cánh diều Bài 67 trang 88 SBT Toán 7 Cánh diều: Cho tam giác...

Bài 67 trang 88 SBT Toán 7 Cánh diều: Cho tam giác ABC cân tại A. Đường trung trực của đoạn thẳng AC cắt cạnh AB tại D. Bi...

Giải Bài 67 trang 88 sách bài tập toán 7 - Cánh diều - Bài 9: Đường trung trực của một đoạn thẳng

Question - Câu hỏi/Đề bài

Cho tam giác ABC cân tại A. Đường trung trực của đoạn thẳng AC cắt cạnh AB tại D. Biết CD là tia phân giác của góc ACB. Tính số đo mỗi góc của tam giác ABC.

- Sử dụng tia phân giác của một góc và tổng ba góc của một tam giác để tìm số đo của các góc trong tam giác ABC.

Answer - Lời giải/Đáp án

 

Đường trung trực của AC cắt AB tại D nên DA = DC.

Do đó tam giác ADC cân tại D.

Suy ra \(\hat A = {\hat C_1}\)

Advertisements (Quảng cáo)

 Vì CD là tia phân giác của góc C nên \({\hat C_1} = {\hat C_2} = \frac{1}{2}\widehat {ACB}\)

 Suy ra \(\hat A = {\hat C_1} = {\hat C_2} = \frac{1}{2}\widehat {ACB}\)

 Hay \(\widehat {ACB} = 2\hat A\)

 Vì tam giác cân ABC nên \(\hat B = \widehat {ACB}\) (hai góc ở đáy).

Do đó \(\hat B = \widehat {ACB} = 2\hat A.\)

Mà \(\hat A + \hat B + \widehat {ACB} = 180^\circ \) (tổng ba góc của tam giác ABC).

Suy ra \(\hat A + 2\hat A + 2\hat A = 180^\circ \)ˆA+2ˆA+2ˆA=180° hay \(5\hat A = 180^\circ \)

Nên \(\hat A = 36^\circ \)

Khi đó \(\hat B = \widehat {ACB} = 2.36^\circ  = 72^\circ \)

 Vậy ∆ABC có \(\hat B = \hat C = 72^\circ ,\hat A = 36^\circ .\)

Advertisements (Quảng cáo)