Quan sát Hình 12. Cho hai góc xOy, yOz là hai góc kề nhau, \(\widehat {xOz} = 150^\circ \) và \(\widehat {xOy} - \widehat {yOz} = 90^\circ \).
a) Tính số đo mỗi góc xOy, yOz.
b) Vẽ các tia Ox’ và Oy’ lần lượt là tia đối của các tia Ox, Oy. Tính số đo mỗi góc x’Oy’, y’Oz, xOy’.
a) Tính số đo góc cần tính dựa vào mối liên hệ của nó với góc còn lại.
b) Các góc đối đỉnh nhau thì có số đo bằng nhau.
Advertisements (Quảng cáo)
a) Do hai góc xOy, yOz là hai góc kề nhau nên \(\widehat {xOz}=\widehat {xOy} + \widehat {yOz}\). Mà \(\widehat {xOz} = 150^\circ \) nên \(\widehat {xOy} + \widehat {yOz} = 150^\circ \).
Ta có:
\(\begin{array}{l}\left\{ \begin{array}{l}\widehat {xOy} - \widehat {yOz} = 90^\circ \\\widehat {xOy} + \widehat {yOz} = 150^\circ \end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}\widehat {xOy} = 120^\circ \\\widehat {yOz} = 30^\circ \end{array} \right.\end{array}\)
Vậy \(\left\{ \begin{array}{l}\widehat {xOy} = 120^\circ \\\widehat {yOz} = 30^\circ \end{array} \right.\).
b)
Ta có: \(\widehat {x’Oy’} = \widehat {xOy} = 120^\circ \) (đối đỉnh).
Ta có: \(\widehat {y’Oz} + \widehat {yOz} = 180^\circ \) (hai góc kề bù). Suy ra: \(\widehat {y’Oz} = 180^\circ - \widehat {yOz} = 180^\circ - 30^\circ = 150^\circ \).
Tương tự, ta có: \(\widehat {xOy’} = 180^\circ - \widehat {xOy} = 180^\circ - 120^\circ = 60^\circ \).