Thu gọn và sắp xếp các đa thức sau theo luỹ thừa giảm dần của biến. Tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đó.
a)\({x^5} + 7{x^2} - x - 2{x^5} + 3 - 5{x^2};\)
b)\(4{x^3} - 5{x^2} + x - 4{x^3} + 3{x^2} - 2x + 6\).
-Rút gọn đa thức
-Bậc: bậc của hạng tử có bậc cao nhất gọi là bậc của đa thức
-Hệ số cao nhất: Hệ số của hạng tử có bậc cao nhất.
-Hệ số tự do: Hệ số của hạng tử không chứa biến x.
Advertisements (Quảng cáo)
a)
\(\begin{array}{l}{x^5} + 7{x^2} - x - 2{x^5} + 3 - 5{x^2}\\ = \left( {{x^5} - 2{x^5}} \right) + \left( {7{x^2} - 5{x^2}} \right) - x + 3\\ = - {x^5} + 2{x^2} - x + 3\end{array}\)
Bậc: 5
Hệ số cao nhất: -1
Hệ số tự do: 3
b)
\(\begin{array}{l}4{x^3} - 5{x^2} + x - 4{x^3} + 3{x^2} - 2x + 6\\ = \left( {4{x^3} - 4{x^3}} \right) + \left( { - 5{x^2} + 3{x^2}} \right) + \left( {x - 2x} \right) + 6\\ = - 2{x^2} - x + 6\end{array}\)
Bậc: 2
Hệ số cao nhất: -2
Hệ số tự do: 6.