Trang chủ Lớp 8 SBT Toán 8 - Cánh diều Bài 39 trang 75 SBT Toán 8 – Cánh diều: Trong Hình...

Bài 39 trang 75 SBT Toán 8 – Cánh diều: Trong Hình 37, cho \(O\) là giao điểm hai đường chéo \(AC\) và \(BD\) của tứ giác \(ABCD\)...

Áp dụng trường hợp đồng dạng thứ hai của tam giác. Hướng dẫn giải bài 39 trang 75 sách bài tập toán 8 – Cánh diều - Bài 7. Trường hợp đồng dạng thứ hai của tam giác. Trong Hình 37, cho \(O\) là giao điểm hai đường chéo \(AC\) và \(BD\) của tứ giác \(ABCD\)....

Question - Câu hỏi/Đề bài

Trong Hình 37, cho \(O\) là giao điểm hai đường chéo \(AC\) và \(BD\) của tứ giác \(ABCD\). Kẻ một đường thẳng tùy ý đi qua \(O\) và cắt cạnh \(AB\) tại \(M,CD\) tại \(N\). Đường thẳng qua \(M\) song song với \(CD\) cắt \(AC\) tại \(E\) và đường thẳng qua \(N\) song song với \(AB\) cắt \(BD\) tại \(F\). Chứng minh:

a) \(\Delta OBE\backsim \Delta OFC\);

b) \(BE//CF\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng trường hợp đồng dạng thứ hai của tam giác: cạnh – góc – cạnh

Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) Do \(MB//NF\) nên theo định lí Thales ta có \(\frac{{OB}}{{OF}} = \frac{{OM}}{{ON}}\) (1)

Tương tự \(NC//ME = > \frac{{OE}}{{OC}} = \frac{{OM}}{{ON}}\) (2)

Từ (1) và (2) ta có: \(\frac{{OB}}{{OF}} = \frac{{OE}}{{OC}}\).

Mà \(\widehat {BOE} = \widehat {FOC}\) (hai góc đối đỉnh).

Suy ra \(\Delta OBE\backsim \Delta OFC\) (c.g.c)

b) Theo câu a, ta có \(\Delta OBE\backsim \Delta OFC\) nên \(\widehat {EBO} = \widehat {CFO}\).

Mà hai góc \(\widehat {EBO}\) và \(\widehat {CFO}\) ở vị trí so le trong \( = > BE//CF\).

Advertisements (Quảng cáo)