Cho \(\Delta MNP\backsim \Delta M’N’P’\) và \(\widehat{M}=30{}^\circ ,\widehat{N’}=40{}^\circ \). Số đo góc \(P\) là:A. \(30{}^\circ \)B. \(40{}^\circ \)C. \(70{}^\circ \)D. \(110{}^\circ \)
Tam giác \(A’B’C’\) gọi là đồng dạng với tam giác \(ABC\) nếu:
\(\widehat{A’}=\widehat{A},\widehat{B’}=\widehat{B},\widehat{C’}=\widehat{C}\) ; \(\frac{A’B’}{AB}=\frac{B’C’}{BC}=\frac{A’C’}{AC}\).
Kí hiệu là \(\Delta A’B’C’\backsim \Delta ABC\).
Tỉ số các cạnh tương ứng \(\frac{A’B’}{AB}=\frac{B’C’}{BC}=\frac{C’A’}{CA}=k\) gọi là tỉ số đồng dạng.
Advertisements (Quảng cáo)
Chọn đáp án D
Vì \(\Delta MNP\backsim \Delta M’N’P’\) nên \(\widehat{M}=\widehat{M’}=30{}^\circ ,\widehat{N}=\widehat{N’}=40{}^\circ ,\widehat{P}=\widehat{P’}\)
Xét \(\Delta MNP\) có: \(\widehat{M}+\widehat{N}+\widehat{P}=180{}^\circ \)
\(=>\widehat{P}=180{}^\circ -30{}^\circ -40{}^\circ =110{}^\circ \).