Trang chủ Lớp 8 SBT Toán 8 - Kết nối tri thức Bài 1.17 trang 11 SBT Toán 8 – Kết nối tri thức:...

Bài 1.17 trang 11 SBT Toán 8 - Kết nối tri thức: Cho ba đa thức: \(M = 3{x^3} - 5{x^2}y + 5x - 3y\) \(N = 4xy - 4x + y\)...

Muốn cộng (hay trừ) hai hay nhiều đa thức, ta nối các đa thức đã cho bởi dấu (+) (hoặc dấu (-) rồi bỏ dấu ngoặc (nếu có) và thu. Lời Giải bài 1.17 trang 11 sách bài tập toán 8 - Kết nối tri thức với cuộc sống - Bài 3. Phép cộng và phép trừ đa thức. Cho ba đa thức: \(M = 3{x^3} - 5{x^2}y + 5x - 3y\) \(N = 4xy - 4x + y\)...

Question - Câu hỏi/Đề bài

Cho ba đa thức:

\(M = 3{x^3} - 5{x^2}y + 5x - 3y\)

\(N = 4xy - 4x + y\)

\(P = 3{x^3} + {x^2}y + x + 1\).

Tính \(M + N - P\) và \(M - N - P\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Muốn cộng (hay trừ) hai hay nhiều đa thức, ta nối các đa thức đã cho bởi dấu (+) (hoặc dấu (-) rồi bỏ dấu ngoặc (nếu có) và thu gọn đa thức nhận được.

Advertisements (Quảng cáo)

Chú ý trước dấu ngoặc là dấu (-) thì khi phá ngoặc, ta đổi dấu tất cả các hạng tử trong dấu ngoặc.

Sử dụng tính chất giao hoán, kết hợp các hạng tử đồng dạng với nhau rồi thu gọn.

Answer - Lời giải/Đáp án

Ta có:

\(\begin{array}{l}M + N - P = \left( {3{x^3} - 5{x^2}y + 5x - 3y} \right) + \left( {4xy - 4x + y} \right) - \left( {3{x^3} + {x^2}y + x + 1} \right)\\ = 3{x^3} - 5{x^2}y + 5x - 3y + 4xy - 4x + y - 3{x^3} - {x^2}y - x - 1\\ = \left( {3{x^3} - 3{x^3}} \right) + \left( { - 5{x^2}y - {x^2}y} \right) + \left( {5x - 4x - x} \right) + \left( { - 3y + y} \right) + 4xy - 1\\ = - 6{x^2}y - 2y + 4xy - 1.\end{array}\)

Ta có:

\(\begin{array}{l}M + N - P = \left( {3{x^3} - 5{x^2}y + 5x - 3y} \right) - \left( {4xy - 4x + y} \right) - \left( {3{x^3} + {x^2}y + x + 1} \right)\\ = 3{x^3} - 5{x^2}y + 5x - 3y - 4xy + 4x - y - 3{x^3} - {x^2}y - x - 1\\ = \left( {3{x^3} - 3{x^3}} \right) + \left( { - 5{x^2}y - {x^2}y} \right) + \left( {5x + 4x - x} \right) + \left( { - 3y - y} \right) - 4xy - 1\\ = - 6{x^2}y + 8x - 4y - 4xy - 1.\end{array}\)

Advertisements (Quảng cáo)