Trang chủ Lớp 8 SBT Toán 8 - Kết nối tri thức Bài 4.14 trang 52 SBT Toán 8 – Kết nối tri thức:...

Bài 4.14 trang 52 SBT Toán 8 - Kết nối tri thức: Cho tam giác ABC, phân giác AD \(\left( {D \in BC} \right)\). Kẻ DE//AB\(\left( {E \in AC} \right)\)...

Sử dụng kiến thức về tính chất đường phân giác của tam giác để chứng minh: Trong tam giác. Giải chi tiết bài 4.14 trang 52 sách bài tập (SBT) toán 8 - Kết nối tri thức với cuộc sống - Bài 17. Tính chất đường phân giác của tam giác. Cho tam giác ABC, phân giác AD \(\left( {D \in BC} \right)\). Kẻ DE//AB\(\left( {E \in AC} \right)\)....

Question - Câu hỏi/Đề bài

Cho tam giác ABC, phân giác AD \(\left( {D \in BC} \right)\). Kẻ DE//AB\(\left( {E \in AC} \right)\). Chứng minh rằng \(AB.EC = AC.EA\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Sử dụng kiến thức về tính chất đường phân giác của tam giác để chứng minh: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn thẳng ấy.

+ Sử dụng kiến thức về định lí Thalès để chứng minh: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Vì AD là tia phân giác của góc BAC trong tam giác ABC nên \(\frac{{CD}}{{DB}} = \frac{{AC}}{{AB}}\) (1) (tính chất đường phân giác của tam giác)

Tam giác ABC có: ED//AB nên theo định lí Thalès ta có: \(\frac{{EC}}{{AE}} = \frac{{DC}}{{DB}}\) (2)

Từ (1) và (2) ta có: \(\frac{{AC}}{{AB}} = \frac{{EC}}{{AE}}\), do đó \(AB.EC = AC.EA\)

Advertisements (Quảng cáo)