Trên cùng một mặt phẳng tọa độ Oxy, cho hai đường thẳng:
\(\left( {{d_m}} \right):y = \left( {1 - m} \right)x + 2\) và \(\left( {d_m^’} \right):y = \left( {m + 1} \right)x - 3\)
Tùy theo giá trị của m, xét vị trí tương đối của hai đường thẳng đã cho.
Sử dụng kiến thức vị trí tương đối của hai đường thẳng để xác định m:
Cho hai đường thẳng \(\left( d \right):y = ax + b\left( {a \ne 0} \right)\,\) và \(\left( {d’} \right):y = a’x + b’\left( {a’ \ne 0} \right)\,\). Khi đó:
Advertisements (Quảng cáo)
+ d cắt d’ nếu \(a \ne a’\)
+ d song song với d’ nếu \(a = a’,b \ne b’\)
+ d trùng d’ nếu \(a = a’,b = b’\)
Vì \(2 \ne - 3\) nên hai đường thẳng trên không thể trùng nhau.
Hai đường thẳng \(\left( {{d_m}} \right)\) và \(\left( {d_m^’} \right)\) song song với nhau thì \(1 - m = m + 1\) , \(2 \ne - 3\) (luôn đúng), suy ra: \(m = 0\)
Hai đường thẳng \(\left( {{d_m}} \right)\) và \(\left( {d_m^’} \right)\) cắt nhau thì \(1 - m \ne m + 1\), suy ra: \(m \ne 0\)