Tứ giác ABCD có tọa độ các đỉnh như sau: A(0; 2), B( 3; 0), C(0; −2 ), D(−3; 0). Tứ giác ABCD là hình gì ? Tính chu vi của tứ giác đó ?
Giải:
A(0; 2) và C(0; −2) nên hai điểm A và C đối xứng nhau qua O (0, 0) ⇒ OA = OC
B(3; 0) và D(−3; 0) nên hai điểm B và D đối xứng qua O (0; 0) ⇒ OB = OD
Tứ giác ABCD là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)
Advertisements (Quảng cáo)
Ox ⊥ Oy hay AC ⊥ BD
Vậy tứ giác ABCD là hình thoi
Trong ∆ OAB vuông tại O. Theo định lý Pi-ta-go ta có:
\(\eqalign{ & A{B^2} = O{A^2} + O{B^2} \cr & A{B^2} = {2^2} + {3^2} = 4 + 9 = 13 \cr & AB = \sqrt {13} \cr} \)
Chu vi hình thoi bằng \(4\sqrt {13} \)