Trang chủ Lớp 8 SBT Toán lớp 8 (sách cũ) Câu 25 trang 8 Sách bài tập Toán 8 tập 1: Chứng...

Câu 25 trang 8 Sách bài tập Toán 8 tập 1: Chứng minh rằng...

Chứng minh rằng. Câu 25 trang 8 Sách bài tập (SBT) Toán 8 tập 1 - Bài 6. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Chứng minh rằng:

\({n^2}\left( {n + 1} \right) + 2n\left( {n + 1} \right)\)luôn chia hết cho 6 với mọi số nguyên n

Ta có: \({n^2}\left( {n + 1} \right) + 2n\left( {n + 1} \right)\) \( = n\left( {n + 1} \right)\left( {n + 2} \right)\)

Advertisements (Quảng cáo)

     Vì n và n+1 là hai số nguyên liên tiếp nên \(n\left( {n + 1} \right) \vdots 2\)

     n, n+1, n+2 là 3 số nguyên liên tiếp

     Nếu \(n\left( {n + 1} \right)\left( {n + 2} \right) \vdots 3\)  mà ƯCLN \(\left( {2;3} \right) = 1\)

    Vậy \(n\left( {n + 1} \right)\left( {n + 2} \right) \vdots \left( {2.3} \right) = 6\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)