Trang chủ Lớp 8 SBT Toán lớp 8 (sách cũ) Câu 84 trang 90 SBT Toán 8 tập 1: Trên hình 11,...

Câu 84 trang 90 SBT Toán 8 tập 1: Trên hình 11, cho ABCD là hình bình hành. Chứng minh...

Trên hình 11, cho ABCD là hình bình hành. Chứng minh rằng. Câu 84 trang 90 Sách bài tập (SBT) Toán 8 tập 1 - Bài 7. Hình bình hành

                                                                       

Trên hình 11, cho ABCD là hình bình hành. Chứng minh rằng:

a. EGFH là hình bình hành

b. Các đường thẳng AC, BD, EF, GH đồng quy.

Giải:                                                                      

a. Xét ∆ AEH và ∆ CFG:

AE = CF

\(\widehat A = \widehat C\) (tính chất hình bình hành)

AH = CG (vì AD = BC và DH = BG)

Do đó: ∆ AEH = ∆ CFG (c.g.c)

⇒ EH = FG

Xét ∆ BEG và ∆DFH:

DH = BG (gt)

Advertisements (Quảng cáo)

\(\widehat B = \widehat D\) (tính chất hình bình hành)

BE = DF (vì AB = CD và AE = CF)

Do đó: ∆ BEG = ∆DFH (c.g.c)

⇒ EG = FH

Suy ra: Tứ giác EGFH là hình bình hành (vì có cắc cặp cạnh đối bằng nhau)

b. Gọi O là giao điểm của AC và EF.

Xét tứ giác AECF:

AB // CD (gt) hay AE // CF

AE = CF (gt)

Suy ra: Tứ giác AECF là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau)

⇒ O là trung điểm của AC và EF

Tứ giác ABCD là hình bình hành có O là trung điểm của AC nên O cũng là trung điểm của BD.

Tứ giác EGFH là hình bình hành có O là trung điểm của EF nên O cùng là trung điểm của GH.

Vậy AC, BD, GH đồng quy tại O.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)