Cho Hình 3, biết \(AM = 3cm;MN = 4cm;AC = 9cm.\) Giá trị của biểu thức \(x - y\) là
A. 4.
B. -3.
C. 3.
D. -4
- Hệ quả của định lí Thales
Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh thứ ba thì tạo ra một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.
- Định lí Py – ta – go
Advertisements (Quảng cáo)
Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
Chọn đáp án B
Vì \(\left\{ \begin{array}{l}MN \bot MC\\BC \bot MC\end{array} \right. \Rightarrow MN//BC\) (quan hệ từ vuông góc đến song song).
Xét tam giác \(ABC\) có\(MN//BC\) nên theo hệ quả của định lí Thales ta có:
\(\frac{{MN}}{{BC}} = \frac{{AM}}{{AC}} \Leftrightarrow \frac{4}{x} = \frac{3}{9} \Rightarrow x = \frac{{4.9}}{3} = 12\).
Xét tam giác \(ABC\) vuông tại \(C\) ta có:
\(A{C^2} + B{C^2} = A{B^2}\) (định lí Py – ta – go)
\( \Leftrightarrow {9^2} + {12^2} = {y^2} \Rightarrow y = \sqrt {81 + 144} = 15\)
Do đó, \(x - y = 12 - 15 = - 3\)