Trang chủ Lớp 8 SGK Toán 8 - Kết nối tri thức Bài 2.27 trang 46 Toán 8 tập 1 – Kết nối tri...

Bài 2.27 trang 46 Toán 8 tập 1 - Kết nối tri thức: Phân tích các đa thức sau thành nhân tử...

Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử, Hướng dẫn trả lời bài 2.27 trang 46 SGK Toán 8 tập 1 - Kết nối tri thức Luyện tập chung trang 45. Phân tích các đa thức sau thành nhân tử...

Question - Câu hỏi/Đề bài

Phân tích các đa thức sau thành nhân tử:

a) \({x^3} + {y^3} + x + y\)

b) \({x^3} - {y^3} + x - y\)

c) \({\left( {x - y} \right)^3} + {\left( {x + y} \right)^3}\)

d) \({x^3} - 3{x^2}y + 3x{y^2} - {y^3} + {y^2} - {x^2}\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử, sử dụng hằng đẳng thức

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) \({x^3} + {y^3} + x + y = \left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right) + \left( {x + y} \right) = \left( {x + y} \right)\left( {{x^2} - xy + {y^2} + 1} \right)\)

b) \({x^3} - {y^3} + x - y = \left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right) + \left( {x - y} \right) = \left( {x - y} \right)\left( {{x^2} + xy + {y^2} + 1} \right)\)

c)

\(\begin{array}{l}{\left( {x - y} \right)^3} + {\left( {x + y} \right)^3} = \left( {x - y + x + y} \right)\left[ {{{\left( {x - y} \right)}^2} - \left( {x - y} \right)\left( {x + y} \right) + {{\left( {x + y} \right)}^2}} \right]\\ = 2x.\left( {{x^2} - 2xy + {y^2} - {x^2} + {y^2} + {x^2} + 2xy + {y^2}} \right) = 2x\left( {{x^2} + 3{y^2}} \right)\end{array}\)

d)

\(\begin{array}{l}{x^3} - 3{x^2}y + 3x{y^2} - {y^3} + {y^2} - {x^2} = \left( {{x^3} - 3{x^2}y + 3x{y^2} - {y^3}} \right) + \left( {{y^2} - {x^2}} \right)\\ = {\left( {x - y} \right)^3} + \left( {y - x} \right)\left( {y + x} \right) = \left( {x - y} \right)\left[ {{{\left( {x - y} \right)}^2} - y - x} \right] = \left( {x - y} \right)\left( {{x^2} - 2xy + {y^2} - x - y} \right)\end{array}\)

Advertisements (Quảng cáo)