Hoạt động4
Với hai số a, b bất kì, viết \(a - b = a + \left( { - b} \right)\) và áp dụng hằng đẳng thức bình phương của một tổng để tính \({\left( {a - b} \right)^2}\).
Sử dụng hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)
\({\left( {a - b} \right)^2} = {\left[ {a + \left( { - b} \right)} \right]^2} = {a^2} + 2.a.\left( { - b} \right) + {\left( { - b} \right)^2} = {a^2} - 2.ab + {b^2}\)
Luyện tập 4
Khai triển \({\left( {3x - 2y} \right)^2}\)
Advertisements (Quảng cáo)
Sử dụng hằng đẳng thức \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\)
\({\left( {3x - 2y} \right)^2} = {\left( {3x} \right)^2} - 2.3x.2y + {\left( {2y} \right)^2} = 9{x^2} - 12xy + 4{y^2}\)
Vận dụng
Trong trò chơi “Ai thông minh hơn học sinh lớp 8”, người dẫn chương trình yêu cầu các bạn học sinh cho biết kết quả của phép tính \({1002^2}\). Chỉ vài giây sau, Nam đã tính ra kết quả chính xác và giành được điểm. Em hãy giải thích xem Nam đã tính nhanh như thế nào.
Sử dụng hằng đẳng thức \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)
\({1002^2} = {\left( {1000 + 2} \right)^2} = {1000^2} + 2.1000.2 + {2^2} = 1000000 + 4000 + 4 = 1004004\).