Trang chủ Lớp 8 Toán lớp 8 (sách cũ) Bài 35 trang 129 sgk Toán lớp 8 tập 1: Tính diện...

Bài 35 trang 129 sgk Toán lớp 8 tập 1: Tính diện tích hình thoi có cạnh dài 6cm và một trong các góc của nó có số đo...

Bài 35. Tính diện tích hình thoi có cạnh dài 6cm và một trong các góc của nó có số đo. Bài 35 trang 129 sgk toán lớp 8 tập 1 - Diện tích hình thoi

Bài 35. Tính diện tích hình thoi có cạnh dài 6cm và một trong các góc của nó có số đo là \(60^{\circ}\)

Hướng dẫn giải:

Cho hình thoi ABCD có cạnh AB = 6cm, \(\widehat{A}\) = \(60^{\circ}\)

Khi đó ∆ABC là tam giác đều. Từ B vẽ BH \(\perp\) AD thì HA = HD. Nên tam giác vuông AHB là nửa tam giác đều, BH là đường cao tam giác đều cạnh 6cm, BH = \(\frac{6\sqrt{3}}{2}\) = 3√ 3 (cm) 

Nên SABCD = BH. AD = 3√ 3. 6 = 18√ 3 (cm2)

Cách khác:

∆ABD là tam giác đều nên BD = AB = 6cm, AI là đường cao tam giác nên AI = \(\frac{6\sqrt{3}}{2}\) = 3√ 3 (cm) \(\Rightarrow\) AC = 6√ 3 (cm)

Advertisements (Quảng cáo)

Nên SBCD = \(\frac{1}{2}\) BD. AC = \(\frac{1}{2}\) 6. 6√ 3 = 18√ 3 (cm2)

Cách tính độ dài đường cao BH:

Theo định lí Pitago, tam giác vuông ABH có:

BH2 = AB2 – AH2 = AB2 - \(\left ( \frac{AB}{2} \right )^{2}\)

                             = AB2 - \(\frac{AB^{2}}{4}\) = \(\frac{3AB^{2}}{4}\).

Nên BH = \(\frac{AB.\sqrt{3}}2{}\) = \(\frac{6\sqrt{3}}2{}\) = 3√ 3 (cm)

Tổng quát: Đường cao tam giác đều cạnh a có độ dài là: ha = \(\frac{a\sqrt{3}}2{}\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)