Bài 32.
a) Hãy vẽ một tứ giác có độ dài hai đường chéo là \(3,6cm, 6cm\) và hai đường chéo đó vuông góc với nhau. Có thể vẽ được bao nhiêu tứ giác như vậy? Hãy tính diện tích mỗi tứ giác vừa vẽ?
b) Hãy tính diện tích hình vuông có độ dài đường chéo là \(d\).
Hướng dẫn giải:
a) Học sinh tự vẽ tứ giác thỏa mãn điều kiện đề bài, chẳng hạn như tứ giác ABCD ở hình dưới có
\(AC = 6cm\)
\(BD = 3,6cm\)
\(AC \perp BD\)
Có thể vẽ được vô số tứ giác theo yêu cầu từ đề bài:
\(AC = 6cm\)
\(BD = 3,6cm\)
\(AC \perp BD\) tại \(I\) với \(I\) là điểm tùy ý thuộc đoạn \(AC\) và \(BD\)
Diện tích của tứ giác vừa vẽ:
\(S_{ABCD}= \frac{1}{2} AC. BD = \frac{1}{2}6. 3,6 = 10,8\) (\(cm^2\))
b) Diện tích hình vuông có độ dài đường chéo là \(d\)
Hình vuông có hai đường chéo bằng nhau và vuông góc với nhau, nên diện tích là:
\(S = \frac{1}{2} d.d = \frac{1}{2} d^2\)