Trang chủ Lớp 8 Vở thực hành Toán 8 (Kết nối tri thức) Bài 2 trang 39 vở thực hành Toán 8: Phân tích các...

Bài 2 trang 39 vở thực hành Toán 8: Phân tích các đa thức sau thành nhân tử...

Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử và sử dụng hằng đẳng thức hiệu hai lập phương. Giải và trình bày phương pháp giải Giải bài 2 trang 39 vở thực hành Toán 8 - Luyện tập chung trang 39 . Phân tích các đa thức sau thành nhân tử:

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Phân tích các đa thức sau thành nhân tử:

a) \({x^3}\; + {y^3}\; + x + y\);

b) \({x^3}\;-{y^3}\; + x-y\);

c) \({\left( {x-y} \right)^3}\; + {\left( {x + y} \right)^3}\);

d) \({x^3}\;-3{x^2}y + 3x{y^2}\;-{y^3}\; + {y^2}\;-{x^2}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử và sử dụng hằng đẳng thức hiệu hai lập phương.

b) Phân tích đa thức thành nhân tử bằng cách nhóm hạng tử và sử dụng hằng đẳng thức hiệu hai lập phương.

c) Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức tổng hai lập phương.

Advertisements (Quảng cáo)

d) Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức lập phương của một hiệu và hiệu hai bình phương.

Answer - Lời giải/Đáp án

a) Ta có \({x^3}\; + {y^3}\; + x + y = \left( {{x^3}\; + {y^3}} \right) + \left( {x + y} \right)\)

\(\begin{array}{*{20}{l}}{ = \left( {x + y} \right)\left( {{x^2}\;-xy + {y^2}} \right) + \left( {x + y} \right)}\\{ = \left( {x + y} \right)\left( {{x^2}\;-xy + {y^2}\; + 1} \right).}\end{array}\)

b) Ta có \({x^3}\;-{y^3}\; + x-y = \left( {{x^3}\;-{y^3}} \right) + \left( {x-y} \right)\)

\(\begin{array}{*{20}{l}}{ = \left( {x-y} \right)\left( {{x^2}\; + xy + {y^2}} \right) + \left( {x-y} \right)}\\{ = \left( {x-y} \right)\left( {{x^2}\; + xy + {y^2}\; + 1} \right).}\end{array}\)

c) Ta có \({\left( {x-y} \right)^3}\; + {\left( {x + y} \right)^3}\; = \left( {x-y + x + y} \right).\left[ {{{\left( {x + y} \right)}^2}\;-\left( {x + y} \right)\left( {x - y} \right) + {{\left( {x - y} \right)}^2}} \right]\)

\(\begin{array}{*{20}{l}}{ = \;2x.\left[ {{x^2}\; + 2xy + {y^2}\;-\left( {{x^2}\;-{y^2}} \right) + {x^2}\; - 2xy + {y^2}} \right]}\\{ = \;2x.\left[ {\left( {{x^2}\;-{x^2}\; + {x^2}} \right)\; + \;\left( {2xy - 2xy} \right)\; + \;\left( {{y^2}\; + {y^2}\; + {y^2}} \right)} \right]}\\{ = 2x\left( {{x^2}\; + 3{y^2}} \right).}\end{array}\)

d) Ta có \({x^3}\;-3{x^2}y + 3x{y^2}\;-{y^3}\; + {y^2}\;-{x^2}\; = \left( {{x^3}\;-3{x^2}y + 3x{y^2}\;-{y^3}} \right)-\left( {{x^{2\;}}-{y^2}} \right)\)

\(\begin{array}{*{20}{l}}{ = {{\left( {x-y} \right)}^3}\;-\left( {x-y} \right)\left( {x + y} \right)}\\{ = \left( {x-y} \right).\left[ {{{\left( {x-y} \right)}^{2\;}}-\left( {x + y} \right)} \right]}\\{ = \left( {x-y} \right)\left( {{x^2}\;-2xy + {y^{2\;}}-x-y} \right).}\end{array}\)

Advertisements (Quảng cáo)