Trang chủ Lớp 8 Vở thực hành Toán 8 (Kết nối tri thức) Bài 4 trang 78 vở thực hành Toán 8: Tam giác ABC...

Bài 4 trang 78 vở thực hành Toán 8: Tam giác ABC có AB = 15 cm, AC = 20 cm, BC = 25 cm...

Sử dụng tính chất đường phân giác của tam giác. Sử dụng công thức tính diện tích tam giác. Gợi ý giải Giải bài 4 trang 78 vở thực hành Toán 8 - Luyện tập chung trang 77 . Tam giác ABC có AB = 15 cm, AC = 20 cm, BC = 25 cm.

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Tam giác ABC có AB = 15 cm, AC = 20 cm, BC = 25 cm. Đường phân giác của góc BAC cắt cạnh BC tại D.

a) Tính độ dài các đoạn thẳng DB và DC.

b) Tính tỉ số diện tích của hai tam giác ABD và ACD.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

- Sử dụng tính chất đường phân giác của tam giác.

- Sử dụng công thức tính diện tích tam giác.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) AD là phân giác của góc BAC, suy ra \(\frac{{BD}}{{DC}} = \frac{{AB}}{{AC}}\) (tính chất đường phân giác của tam giác)

\(\begin{array}{l}\frac{{25 - DC}}{{DC}} = \frac{{15}}{{20}}\\\begin{array}{*{20}{l}}{20.\left( {25-DC} \right)= 15DC}\\{35.DC= 500}\end{array}\\DC = \frac{{100}}{7} \approx 14,3\,\,\left( {cm} \right).\end{array}\)

Suy ra DB = BC – DC ≈ 10,7 (cm).

b) Ta có \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}} = \frac{{15}}{{20}} = \frac{3}{4}.\)

∆ABD và ∆ACD có cùng đường cao AH nên tỉ số diện tích của hai tam giác bằng tỉ số độ dài của hai cạnh đáy DB và DC.

Vậy tỉ số diện tích của hai tam giác ABD và ACD là \(\frac{3}{4}.\)

Advertisements (Quảng cáo)