Trang chủ Lớp 8 Vở thực hành Toán 8 (Kết nối tri thức) Bài 5 trang 36 vở thực hành Toán 8: Chứng minh rằng...

Bài 5 trang 36 vở thực hành Toán 8: Chứng minh rằng \({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right). \) Áp dụng...

Chứng minh vế phải bằng vế trái bằng cách sử dụng hằng đẳng thức lập phương của một tổng. Hướng dẫn cách giải/trả lời Giải bài 5 trang 36 vở thực hành Toán 8 - Luyện tập chung trang 35 . Chứng minh rằng \({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right).

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Chứng minh rằng \({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right).\)

Áp dụng, tính \({a^3} + {b^3}\) nếu \(a + b = 4\) và \(ab = 3\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Chứng minh vế phải bằng vế trái bằng cách sử dụng hằng đẳng thức lập phương của một tổng: \({(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\)

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Ta có \({\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} - 3{a^2}b - 3a{b^2}\)

\( = \left( {{a^3} + {b^3}} \right) + \left( {3{a^2}b - 3{a^2}b} \right) + \left( {3a{b^2} - 3a{b^2}} \right) = {a^3} + {b^3}.\)

Vậy ta có điều phải chứng minh.

Áp dụng:

\({a^3} + {b^3} = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) = {4^3} - 3.3.4 = 28.\)

Advertisements (Quảng cáo)