Trang chủ Lớp 8 Vở thực hành Toán 8 (Kết nối tri thức) Bài 7 trang 32 vở thực hành Toán 8: Chứng minh rằng...

Bài 7 trang 32 vở thực hành Toán 8: Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x...

Rút gọn A bằng cách sử dụng hằng đẳng thức: - Sử dụng hằng đẳng thức lập phương của một tổng. Hướng dẫn giải Giải bài 7 trang 32 vở thực hành Toán 8 - Bài 7. Lập phương của một tổng. Lập phương của một hiệu . Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x.

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x.

\(A = {\left( {x + 3} \right)^3} - {\left( {x - 3} \right)^3} - 18{x^2}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Rút gọn A bằng cách sử dụng hằng đẳng thức:

Advertisements (Quảng cáo)

- Sử dụng hằng đẳng thức lập phương của một tổng: \({(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\)

- Sử dụng hằng đẳng thức lập phương của một hiệu: \({(a - b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\)

Answer - Lời giải/Đáp án

Ta có

\(\begin{array}{l}A = \left( {{x^3} + 3.{x^2}.3 + 3.x{{.3}^2} + {3^3}} \right) - \left( {{x^3} - 3.{x^2}.3 + 3.x{{.3}^2} - {3^3}} \right) - 18{x^2}\\ = {x^3} + 9{x^2} + 27x + 27 - {x^3} + 9{x^2} - 27x + 27 - 18{x^2}\\ = \left( {{x^3} - {x^3}} \right) + \left( {9{x^2} + 9{x^2} - 18{x^2}} \right) + \left( {27x - 27x} \right) + \left( {27 + 27} \right)\\ = 54\end{array}\)

Vậy giá trị của biểu thức A không phụ thuộc vào biến x.

Advertisements (Quảng cáo)