Sử dụng hằng đẳng thức tổng hai lập phương. Trả lời Câu 4 trang 33 - Bài 8. Tổng và hiệu hai lập phương - Vở thực hành Toán 8.
Câu hỏi/bài tập:
Khẳng định nào sau đây là đúng?
A. \({A^3} + {B^3} = (A - B)({A^2} + AB + {B^2})\).
B. \({A^3} + {B^3} = (A + B)({A^2} + AB + {B^2})\).
C. \({A^3} - {B^3} = (A - B)({A^2} - AB + {B^2})\).
D. \({A^3} - {B^3} = (A - B)({A^2} + AB + {B^2})\).
Advertisements (Quảng cáo)
- Sử dụng hằng đẳng thức tổng hai lập phương: \({a^3} + {b^3} = (a + b)\left( {{a^2} - ab + {b^2}} \right)\)
- Sử dụng hằng đẳng thức hiệu hai lập phương: \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)
Khẳng định đúng là \({A^3} - {B^3} = \left( {A - B} \right)\left( {{A^2} + AB + {B^2}} \right).\)
=> Chọn đáp án D.