Rút gọn các biểu thức:
a) \(\frac{{\sqrt {5{a^3}} }}{{\sqrt {80a} }}\) (a > 0)
b) \(\frac{{6a}}{b}\sqrt {\frac{{{b^2}}}{{9{a^4}}}} (a \ne 0,b \le 0)\)
c) \(\sqrt {\frac{{4{a^2} - 4a + 1}}{{{a^2}}}} \) với 0
d) \((a - b).\sqrt {\frac{{ab}}{{{{(a - b)}^2}}}} \) với a
Dựa vào: Với mọi biểu thức A bất kì, ta có \(\sqrt {{A^2}} = \left| A \right|\).
\(\sqrt {{A^2}} = A\) khi \(A \ge 0\); \(\sqrt {{A^2}} = - A\) khi \(A
Với hai biểu thức A và B nhận giá trị không âm, ta có \(\sqrt {A.B} = \sqrt A .\sqrt B \).
Với biểu thức A nhận giá trị không âm và biểu thức B nhận giá trị dương, ta có:
Advertisements (Quảng cáo)
\(\sqrt {\frac{A}{B}} = \frac{{\sqrt A }}{{\sqrt B }}\).
a) \(\frac{{\sqrt {5{a^3}} }}{{\sqrt {80a} }} = \sqrt {\frac{{5{a^3}}}{{80a}}} = \sqrt {\frac{{{a^2}}}{{16}}} = \frac{{\left| a \right|}}{4} = \frac{a}{4}\) (a > 0)
b) \(\frac{{6a}}{b}\sqrt {\frac{{{b^2}}}{{9{a^4}}}} \)
\(= \frac{{6a}}{b}.\frac{{\sqrt {{b^2}} }}{{\sqrt {9{a^4}} }} \\= \frac{{6a}}{b}.\frac{{\left| b \right|}}{{3\left| {{a^2}} \right|}} \\ = \frac{{6a}}{b}.\frac{{ - b}}{{3{a^2}}} \\ = - \frac{2}{a}(a \ne 0,b \le 0)\)
c) \(\sqrt {\frac{{4{a^2} - 4a + 1}}{{{a^2}}}} \)
\(= \sqrt {\frac{{{{\left( {2a - 1} \right)}^2}}}{{{a^2}}}} \\ = \frac{{\sqrt {{{\left( {2a - 1} \right)}^2}} }}{{\sqrt {{a^2}} }} \\ = \frac{{\left| {2a - 1} \right|}}{{\left| a \right|}}\)
\(= \frac{{1 - 2a}}{a}\) với 0
d) \((a - b).\sqrt {\frac{{ab}}{{{{(a - b)}^2}}}} \)
\(= (a - b).\frac{{\sqrt {ab} }}{{\sqrt {{{(a - b)}^2}} }} \\= (a - b).\frac{{\sqrt {ab} }}{{\left| {a - b} \right|}} \\= (a - b).\frac{{\sqrt {ab} }}{{ - \left( {a - b} \right)}}\)
\( = - \sqrt {ab} \) với a