Trang chủ Lớp 9 SBT Toán 9 - Chân trời sáng tạo Bài 5 trang 47 SBT Toán 9 – Chân trời sáng tạo...

Bài 5 trang 47 SBT Toán 9 - Chân trời sáng tạo tập 1: Tính √16/121 √421/25 c) √6, 4/8, 1 d) √300 /√27 e) √6...

Dựa vào: Với số thực a không âm và số thực b dương, ta có \(\sqrt {\frac{a}{b}} = \frac{{\sqrt a }}{{\sqrt b }}\). Trả lời - Bài 5 trang 47 sách bài tập toán 9 - Chân trời sáng tạo tập 1 - Bài 3. Tính chất của phép khai phương. Tính a) (sqrt {frac{{16}}{{121}}} ) b) (sqrt {4frac{{21}}{{25}}} ) c) (sqrt {frac{{6, 4}}{{8, 1}}} ) d) (frac{{sqrt {300} }}{{sqrt {27} }}) e) (frac{{sqrt 6 }}{{sqrt {150} }}) g) (sqrt {frac{3}{2}}...

Question - Câu hỏi/Đề bài

Tính

a) \(\sqrt {\frac{{16}}{{121}}} \)

b) \(\sqrt {4\frac{{21}}{{25}}} \)

c) \(\sqrt {\frac{{6,4}}{{8,1}}} \)

d) \(\frac{{\sqrt {300} }}{{\sqrt {27} }}\)

e) \(\frac{{\sqrt 6 }}{{\sqrt {150} }}\)

g) \(\sqrt {\frac{3}{2}} :\sqrt {\frac{1}{{24}}} \)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Advertisements (Quảng cáo)

Dựa vào: Với số thực a không âm và số thực b dương, ta có \(\sqrt {\frac{a}{b}} = \frac{{\sqrt a }}{{\sqrt b }}\).

Answer - Lời giải/Đáp án

a) \(\sqrt {\frac{{16}}{{121}}} = \frac{{\sqrt {16} }}{{\sqrt {121} }} = \frac{{\sqrt {{4^2}} }}{{\sqrt {{{11}^2}} }} = \frac{4}{{11}}.\)

b) \(\sqrt {4\frac{{21}}{{25}}} = \sqrt {\frac{{121}}{{25}}} = \frac{{\sqrt {{{11}^2}} }}{{\sqrt {{5^2}} }} = \frac{{11}}{5}.\)

c) \(\sqrt {\frac{{6,4}}{{8,1}}} = \sqrt {\frac{{64}}{{81}}} = \frac{{\sqrt {{8^2}} }}{{\sqrt {{9^2}} }} = \frac{8}{9}\).

d) \(\frac{{\sqrt {300} }}{{\sqrt {27} }} = \sqrt {\frac{{300}}{{27}}} = \sqrt {\frac{{100}}{9}} = \frac{{\sqrt {{{10}^2}} }}{{\sqrt {{3^2}} }} = \frac{{10}}{3}\) .

e) \(\frac{{\sqrt 6 }}{{\sqrt {150} }} = \sqrt {\frac{6}{{150}}} = \sqrt {\frac{1}{{25}}} = \frac{1}{{\sqrt {{5^2}} }} = \frac{1}{5}\).

g) \(\sqrt {\frac{3}{2}} :\sqrt {\frac{1}{{24}}} = \sqrt {\frac{3}{2}:\frac{1}{{24}}} = \sqrt {36} = \sqrt {{6^2}} = 6\).

Advertisements (Quảng cáo)