Cho hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\2x + my = 5\end{array} \right.\).
a) Giải hệ với \(m = 1\).
b) Chứng tỏ rằng hệ đã cho vô nghiệm khi \(m = 6\).
a) Thay \(m = 1\) ta được hệ hai phương trình bậc nhất hai ẩn x, y, giải phương trình bằng phương pháp cộng đại số tìm được x, y.
b) Thay \(m = 6\) ta được hệ hai phương trình bậc nhất hai ẩn, giải phương trình bằng phương pháp cộng đại số ta chứng minh được hệ phương trình vô nghiệm.
a) Với \(m = 1\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\2x + y = 5\end{array} \right.\).
Advertisements (Quảng cáo)
Nhân hai vế của phương trình thứ nhất với 2 ta được hệ phương trình \(\left\{ \begin{array}{l}2x + 6y = 2\\2x + y = 5\end{array} \right.\).
Trừ từng vế hai phương trình của hệ phương trình mới ta được \(5y = - 3\), suy ra \(y = \frac{{ - 3}}{5}\).
Thay \(y = \frac{{ - 3}}{5}\) vào \(x + 3y = 1\) ta được: \(x + 3.\frac{{ - 3}}{5} = 1\), suy ra \(x = \frac{{14}}{5}\).
Vậy với \(m = 1\) thì hệ phương trình đã cho có nghiệm là \(\left( {\frac{{ - 3}}{5};\frac{{14}}{5}} \right)\).
b) Với \(m = 6\) ta có hệ phương trình \(\left\{ \begin{array}{l}x + 3y = 1\\2x + 6y = 5\end{array} \right.\).
Nhân hai vế của phương trình thứ nhất với 2 ta được hệ phương trình \(\left\{ \begin{array}{l}2x + 6y = 2\\2x + 6y = 5\end{array} \right.\).
Trừ từng vế hai phương trình của hệ phương trình mới ta được \(0x + 0y = - 3\).
Do không có giá trị nào của y thỏa mãn hệ thức \(0x + 0y = - 3\) nên hệ phương trình đã cho vô nghiệm.
Vậy hệ đã cho vô nghiệm khi \(m = 6\).