Trang chủ Lớp 9 SBT Toán 9 - Kết nối tri thức Bài 5.7 trang 59 SBT toán 9 – Kết nối tri thức...

Bài 5.7 trang 59 SBT toán 9 - Kết nối tri thức tập 1: Cho tam giác cân ABC (AB=AC). Gọi (O) là đường tròn đi qua ba điểm A, B...

Chứng minh \(\Delta OAB = \Delta OAC\left( {c. c. c} \right)\). Suy ra \(\widehat {AOB} = \widehat {AOC}\). Lời giải Giải bài 5.7 trang 59 sách bài tập toán 9 - Kết nối tri thức tập 1 - Bài 14. Cung và dây của một đường tròn . Cho tam giác cân ABC (AB=AC). Gọi (O) là đường tròn đi qua ba điểm A, B,

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Cho tam giác cân ABC (AB=AC). Gọi (O) là đường tròn đi qua ba điểm A, B, C và E là điểm trên cung nhỏ BC sao cho $\overset\frown{BE}=\overset\frown{EC}$.

a) Chứng minh rằng ba điểm A, O, E thẳng hàng.

b) Gọi H là chân đường cao hạ từ A xuống BC. Chứng minh rằng \(AH < AB < AE\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) + Chứng minh \(\Delta OAB = \Delta OAC\left( {c.c.c} \right)\). Suy ra \(\widehat {AOB} = \widehat {AOC}\), suy ra $\overset\frown{AB}=\overset\frown{AC}$

+ Mà $\overset\frown{BE}=\overset\frown{EC}$. Suy ra: sđ$\overset\frown{ABE}=sđ\overset\frown{ACE}$.

+ Vì $sđ\overset\frown{ABE}+sđ\overset\frown{ACE}={{360}^{o}}$ nên sđ$\overset\frown{ABE}=sđ\overset\frown{ACE}=\frac{{{360}^{o}}}{2}={{180}^{o}}$, suy ra ba điểm A, O, E thẳng hàng.

b) + Vì EA đi qua O nên AE là đường kính của (O), AB là dây không đi qua O nên \(AB < AE\).

+ Tam giác ABH vuông tại H nên AB là cạnh huyền. Do đó, \(AH < AB\).

+ Vậy \(AH < AB < AE\).

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) Tam giác OAB và tam giác OAC có: OA chung, \(AB = AC,OB = OC\) nên \(\Delta OAB = \Delta OAC\left( {c.c.c} \right)\).

Suy ra \(\widehat {AOB} = \widehat {AOC}\).

Mà AOB là góc ở tâm chắn cung nhỏ AB, AOC là góc ở tâm chắn cung nhỏ AC. Do đó, $\overset\frown{AB}=\overset\frown{AC}$

Theo giả thiết, $\overset\frown{BE}=\overset\frown{EC}$. Do đó, sđ$\overset\frown{AB}+sđ\overset\frown{BE}=sđ\overset\frown{EC}+sđ\overset\frown{AC}$

Suy ra: sđ$\overset\frown{ABE}=sđ\overset\frown{ACE}$. Mà $sđ\overset\frown{ABE}+sđ\overset\frown{ACE}={{360}^{o}}$ nên sđ$\overset\frown{ABE}=sđ\overset\frown{ACE}=\frac{{{360}^{o}}}{2}={{180}^{o}}$

Do đó, cung ABE là nửa đường tròn. Vậy ba điểm A, O, E thẳng hàng.

b) Vì EA đi qua O nên AE là đường kính của (O), AB là dây không đi qua O nên \(AB < AE\).

Tam giác ABH vuông tại H nên AB là cạnh huyền. Do đó, \(AH < AB\).

Vậy \(AH < AB < AE\).

Advertisements (Quảng cáo)