Trang chủ Lớp 9 SBT Toán 9 - Kết nối tri thức Bài 6.39 trang 21 SBT toán 9 – Kết nối tri thức...

Bài 6.39 trang 21 SBT toán 9 - Kết nối tri thức tập 2: Trong một giải cờ vua thi đấu vòng tròn tính điểm...

Thay \(x = 10\) vào \(N = \frac{{{x^2} - x}}{2}\) ta tìm được N. Phân tích và giải Giải bài 6.39 trang 21 sách bài tập toán 9 - Kết nối tri thức tập 2 - Bài tập cuối chương VI . Trong một giải cờ vua thi đấu vòng tròn tính điểm,

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Trong một giải cờ vua thi đấu vòng tròn tính điểm, mỗi người chơi đấu với một người chơi khác đúng một lần. Công thức \(N = \frac{{{x^2} - x}}{2}\) dùng để tính số ván cờ N phải chơi theo thể thức thi đấu vòng tròn một lượt khi có x người chơi.

a) Nếu một giải đấu có 10 người chơi thì có tất cả bao nhiêu ván cờ?

b) Trong một giải cờ vua thi đấu vòng tròn có tất cả 36 ván cờ, hỏi có bao nhiêu người đã tham gia giải đấu?

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Thay \(x = 10\) vào \(N = \frac{{{x^2} - x}}{2}\) ta tìm được N.

Advertisements (Quảng cáo)

b) Thay \(N = 36\) vào \(N = \frac{{{x^2} - x}}{2}\), ta tìm được phương trình bậc hai ẩn x, giải phương trình, kết hợp với điều kiện \(x > 0\), ta tìm được số người tham gia giải đấu.

Answer - Lời giải/Đáp án

a) Có 10 người chơi nên số ván cờ là: \(N = \frac{{{{10}^2} - 10}}{2} = 45\) (ván cờ). Vậy có 45 ván cờ trong giải đấu đó.

b) Có 36 ván cờ nên ta có \(\frac{{{x^2} - x}}{2} = 36\), suy ra \({x^2} - x - 72 = 0\).

Vì \(\Delta = {\left( { - 1} \right)^2} - 4.1.\left( { - 72} \right) = 289\) nên phương trình có hai nghiệm \({x_1} = \frac{{1 + \sqrt {289} }}{2} = 9\) (thỏa mãn \(x > 0\)), \({x_2} = \frac{{1 - \sqrt {289} }}{2} = - 8\) (loại do \(x > 0\)).

Vậy có 9 người tham gia giải đấu thì có 36 ván cờ.

Advertisements (Quảng cáo)